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Abstract

Temporal networks are obtained from time-dependent interactions among indi-
viduals, whereas the interactions can be emails, phone calls, face-to-face meetings,
or work collaboration. In this article, a temporal game framework is established,



in which interactions among rational individuals are embedded into two-player
games in a time-dependent manner. This allows studying the time-dependent
complexity and variability of interactions, and the way they affect prosocial
behaviors. Based on this simple mathematical model, it is found that the level
of cooperation is promoted when the time of collaboration is equally limited
for every individual. This observation is confirmed with a series of system-
atic human experiments that forms a foundation for comprehensively describing
human temporal interactions in collaboration. The research results reveal an
important incentive for human cooperation, leading to a better understanding of
a fascinating aspect of human nature in society.
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1 Introduction

Many complex collaborative systems in nature, society, and engineering can be
modeled through networks based on graph theory. In a network, nodes represent col-
laborating individuals, and links represent their friendships [1]. In simple or simplified
network modeling, links are weightless, undirected, and static. In order to improve the
ability to depict real systems, weighted [2], directed [3], and dynamic [4] network mod-
els are established. The application of these network models in social science proved
that the closer the framework is to reality, the stronger its ability to explain behaviors.
As one of such social behavior in human interactive systems, cooperation is of particu-
lar importance which has attracted broad attention for more than half a century [5-8].
Although humans are not exempted from selfishness, and they obey the fundamen-
tal principles of Darwinian competition-based evolution, cooperation is ubiquitous in
and across societies [9]. While the impetus for the human strong cooperative drive has
been linked to the difficulties of the genus Homo in rearing offspring that survived
and to the emergence of alloparental care [10], and also to the formation of alliances
in times of conflicts [11], it is still puzzling as why they have achieved such high levels
of cooperation in general. Human altruistic behavior distinguishes them remarkably
from other mammals, forming the bedrock for their astonishing evolutionary success
in history.

The studies of human cooperation in n-person games begin with population games,
also known as mean-field games [12-14]. In a well-mixed population, cooperation
can hardly prevail with imitative update rules when individuals play non-cooperative
games such as the Prisoner’s Dilemma (PD) game [15]. If the population exhibits a
relatively stable social structure, the consequence may be different [16-26] — a finding
rooted in the seminal paper by Nowak and May [27], observing clusters of cooperators
on a square lattice that protected them from invading defectors. Nevertheless, social
networks are seldom static. People disconnect and then reconnect to form connec-
tions with new partners from time to time. This reality has revealed new mechanisms
for cooperation that may sustain even under extremely adverse conditions, when the
temptation to defect is high and where on static network cooperation is perishing [28].
Moreover, an individual usually does not interact with all his friends all the time but
likely does so only occasionally.



To account for the above-observed phenomena, some researchers considered
dynamic networks. Implications of dynamic interactions on human cooperation are
profound. Recent human experiments as well as theoretical analysis both have con-
firmed this to the fullest [2, 29-33]. It is argued, for example, that these observations
demonstrate the effects of reputation [4]. Individuals may connect with unfamiliar
individuals after browsing their gaming records but cut some existing connections with
unsatisfactory partners. Some may take breaking ties, instead of performing defection,
as a way to penalize defectors [29]. Interestingly, the implication of dynamic reconnec-
tion fades out as individuals are taking more specific moves to play games with their
partners [4]. In light of this, an interesting question is whether dynamic reconnection
is relevant to the level of cooperation in a human collaborative system if there is a
time limit on the duration of a game. From the perspective of biological markets [34],
the dynamic reconnection in such a system is a reallocation of collaboration time in a
time-limited collaborative condition. Will too much emphasis put on the structure of
our social networks result in neglecting the temporal aspects of our interactions? In
this article, this critical question will be addressed.

Due to the complexity of temporal systems, using evolutionary game theory to
model collaboration behavior is quite challenging. First, the evolution mechanism of
a temporal system itself is complicated and hard to describe by a simple mathemati-
cal model. Secondly, in a temporal game, the individual strategy involves not only the
moves but also the allocation of time in each round of the game. Furthermore, this
openness allows individual strategy and network topology to co-evolve in a more flex-
ible way than the existing dynamical gaming networks [35, 36], which brings up the
difficulty in modeling coupled systems.

In this paper, a temporal gaming framework is proposed based on the structure
of temporal networks [37, 38]. The main objective is to test the impact of limited
time on the level of cooperation in two-player collaborative systems. Such systems are
common in reality. For instance, it usually takes a team to accomplish a project when
applying for funding. The project leader would typically collaborate with a member
to accomplish a specific part of it. Meanwhile, the member or the leader may also be
involved in more than one project. Simultaneously, the total number of working time,
such as months, for each participant is limited, which is identical for everyone. In such
a scenario, a temporal gaming network is naturally laid out. Here, the collaboration
between two team members is closer to the stag hunt game than the PD game. Since
cooperation normally dominates the collaboration system playing the stag hunt game,
it is not easy to differentiate the impacts from various mechanisms. For this reason,
the PD game is adopted in this paper.

One of the main contributions of this paper is a detailed online experiment for
demonstrating the proposed theoretical framework. First, a gaming platform is estab-
lished to implement a temporal game. Then, the level of cooperation is tested on
the platform in a divide and conquer (D&C) mode [4, 39, 40], where the difference
from the present setting with those of the existing works [23, 29, 30, 41] is in the
targeted decisions. Finally, the level of cooperation is tested on the platform in a
time-dependent mode, where both the time limitation for individuals and the targeted
decisions are considered. The reasons for adopting these mechanisms are explained in
Section Ezxperimental design. The objective is to find whether the limitation on time
resources governs human cooperation in the games, which is the focus of this study.



To understand the impact of the limited time, we invited 183 human subjects and
carried out a set of comparative online experiments. In a match of the game, the
participants are allocated to the nodes of some pre-generated networks. Two classes of
networks are tested, namely the Barabdsi-Albert scale-free network [42] and the Watts-
Strogatz small-world network, for they are the most popular social network models. It
will be shown that the limitation to the individuals’ time resources indeed promotes
the participants’ level of cooperation, which aligns with the theoretical prediction, as
further discussed below.

2 Theoretical framework of temporal games

2.1 Temporal game model

In a two-strategy (i.e., only two moves are allowed) game, define i’s strategy as ; =
< 1 E(ZX > , where X; can only take 1 or 0 in each game and each round of the play. If
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X; =1, i is a cooperator denoted by C'; if X; =0, ¢ is a defector denoted by D. Take
the PD game [43] for example. In the PD game, the payoff table is a 2 x 2 matrix. Given
’s strategy, i’s payoff in the game playing with all his neighbors (denoted by N;) can
be written as G; = QF (7,7% 7‘2) ZjeNi ;. In this PD model, a player gains T (the
temptation to defect) for defecting a cooperator, R (reward for mutual cooperation)
for cooperating with a cooperator, P (punishment for mutual defection) for defecting
a defector, and S (sucker’s payoff) for cooperating with a defector. Normally, the four
payoff values satisfy the following inequalities: 7 > R > P > S and 2R > T + S.
Here, 2R > T + S makes mutual cooperation the best outcome from the perspective
of a collective decision.

The temporal game model proposed in the present paper is based on the game
model used in [39, 40], taking into account the time of interactions. As the model
is time-dependent, each interaction is assigned a specific duration. The total game
time for each individual in one round is set to be a constant, which is the same for
all individuals to be realistic in real-life scenarios. An individual’s interactions with
different partners are assumed to be independent. The payoff of the game between
individuals 7 and j can be written as s; ; = QZTJ 77% g ;. In temporal games, the
payoff of each interaction is proportional to the time it spends. In one round of the
game, the accumulated payoff of the individual ¢ is defined as

Ti,j
Ai = Z ?J X 855, (1)

JEN;

where N; is the set of i’s neighbors and 7; ; is the duration of the interaction between

individuals ¢ and j. This is shown in Fig. 1A, where individual i and j are colored

red and blue, N; = 4 and 7;; = 8. Note that 7; ; should satisfy the constraints of

7i; €[0,%) and > 7;; < T. Here, T is the total time resource an individual has in
JEN;

each round, which is a constant for every individual in the proposed model. In Fig. 1A,

T = 24. If individual ¢ does not want to collaborate with j, then 7 will not play the



game with j any longer. Simultaneously, i will reject j’s gaming request. In this case,
7;,; will be 0 as indicated by the relation between the red and the green in Fig. 1A.

A. Action Stage B. Payoffs
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Fig. 1 Illustration of the temporal game. Panel A shows one round of the temporal game among
five individuals. The individual colored red has four friends, in which the individuals colored orange
and blue are his gaming partners. If the game between two individuals lasts for 24 hours, the payoff
of a cooperator is 3 and 0, gaining from a cooperator and a defector, respectively. The payoff of a
defector is 5 and 1, gaining from a cooperator and a defector, respectively.

Let P; be the set of partners who are interacting with ¢ in this round. Then, Eq. 1

can be written as .
Ai = Z % X Si g, (2)
JER;
where 7; ; is greater than 0. For the red individual in Fig. 1A, the orange and the blue
ones are his partners in this round. Based on Eq. 2, the payoffs of the five individuals
are listed in Fig. 1B.
From a mean-field view, Eq. 2 can be written as

Thy ks
Aki = T -pP (kiv kj) Skikjs (3)
kj

where P(k;, k;) is the probability that a link exists between ¢ and j, depending on the
topology of the collaborative network. For a heterogeneous network as the Barabasi-
Albert (BA) networks [44], P(k;, k;j) ~ @1(37(;@) For homogeneous networks such as
the Watts-Strogatz (WS) networks [45], P(k;, k;) ~ P(k;).

An illustration of such a collaborative network is shown in Fig. 2A. To clarify the
generating procedure of the network, the communication log among the individuals in
this round is shown in Fig. 2B. In the log, Alice tries to collaborate with Tom for ¥,
while Tom had agreed to work with Jerry and Frank when he received Alice’s request.
Thus, Alice turns to Frank and Jerry, but it is a bit late to make appointments with
them as they are partially engaged. As a result, Alice takes 0.8% to play with Frank
and Jerry but wastes 0.2% in this round.



Communication Log

No.| From [ To Communication Records
Request for interaction with 0.2T.

Tom |Request for interaction with 0.47.

Alice |Request for interaction with 0.4%.
OK.

Frank [ Tem |Request for interaction with 0.6%.

OK.

Tom | Frank oK.

Alice | Tom [Request for interaction with T.

Frank | Alice |Request for interaction with 0.47.

Tom | Alice [Sorry.
@ | Alice | Frank [0k

@ | Alice IS o

|8le@eee®e|ee
g
3

Fig. 2 Ilustration of temporal games in a two-player collaborative system. (A) One round of the
temporal game on a social network. The blue circle is Jerry’s neighborhood. Alice, Bob, and Tom
are Jerry’s partners in this round. The color of a time slot represents a partner; for instance, yellow
represents Frank. C or D in the time slot denotes the move from the individual at the tail of a directed
dashed line to the indicated specific partner. (B) The generating procedure of the circumstance is
presented in (A). In the communication log, the records are sorted by their sequence numbers in
ascending order. Only if both players agree to collaborate (the response to a request is OK) will their
colors appear in each other’s collaboration schedule, i.e., a time slot in (A).

2.2 Proportion of cooperation in the temporal game

In the temporal game, each game between two players is performed for a duration
of time. Thus, the level of cooperation is measured by the duration and their moves.
Define the proportion of cooperation as P. = %’ where T is the total duration of
the moves and T¢ is the total duration of cooperation in the game.

Note that current studies on decision time [46, 47] in experimental psychology and
response time in experimental economics [48, 49] focus on the time instant for making
a decision rather than the duration of time spent by moves. As such, the object of
those studies is different from that of temporal games.

2.3 Mathematical modeling the available time of individuals

As is well known, in a game between two players, each player has to practice one of the
four possible actions, namely, cooperating with a cooperator (CC), cooperating with
a defector (CD), defecting a cooperator (DC), and defecting a defector (DD). Here,
define a state vector ® by (®cc, Pop, Ppe, Ppp), in which each entry corresponds
to the probability of the indicated action. Generally, a memory-one strategy can be
written as p = (pcc, Pop, Ppc,PpD), corresponding to the probabilities of cooperat-
ing under each of the previous action outcomes. Since players update their moves with
the memory-one strategies in each time step, the update can be considered a Markov
process. A Markov transition matrix M; can be used to realize the update. For two
players, ¢+ and 7, one has

pccsce poc(l —sce) (1 —pec)sce (1 —poc)(l —sce)

Mo~ |Popspc pep(l = spe) (1 = pep)spo (1 —pep)(l = spe) 4
ppcscp poc(l—scp) (1 —ppc)sep (1 —ppc)(1 —scp)
ppsppPpp(l —spp)(l —ppp)spp(l —ppp)(1 —spp)

where the vectors p = (pcc,pep,Ppc,ppp) and s = (scc, Scp, Spc, Spp) denote
players i and j’s probabilities of cooperation in the next round after experiencing CC,



CD, DC, and DD, respectively. Thus, the evolution of i’s state vector ®;(t) is given
by

To model the total available time of individuals in the temporal games, assume that
no players at round r — 1 reject the requests from an individual 4 if they are available.
The time left for him to spend in round r is denoted by S; (r) =T — ZjePi Tuij(r—1)
where fi;; (r — 1) is the random portion of time within the request from 4 in round
r — 1. If ¢ applies for playing with j from S; (r) p;; (), the successful probability of
the request is

0, 85 (r) < S (r) paj (r),
assuming that j wishes to play. Therefore, the expectation of difference during
individual ¢’s available time from round r to r + 1 is

wis (rs iy (r)) = { 1, 8; (r) > Si (r) paj (1), o

0i (1) = = X jeni—pir—1) Wij (s g (1)) (i (r) (7)
Xi,cC
Xi,CD
+ Zlepi(r—n i (r—1) | ®a(r)- Xi.pC pij (r) s
Xi,DD

where x; denotes i’s probabilities of reassigning time after experiencing the four out-
comes, and «; (r) denotes the timeshare which i assigned to ! at round r. Note

that
> (r)+Si(r) =1 (8)
lep;
Since S; (r) > 0 for all r, the iterative formula of S; (r) can be written as

Si (r+1) = Relu(g; (r) + S; (1)), (9)

>
where Relu (z) = g’ i - 8’ As the evolution process of S; (r) in the system cannot

be modeled in a mean-field manner, one can hardly find and present its analytical
solution. Therefore, the following presents only simulation results and empirical results
from human online experiments. In the simulations, all agents uniformly adopt the
same strategy; therefore, the results are reproducible. Let the number of agents be
Ny4. It will be shown that the average available time S (r) = w falls to a low
level at the first round. It is stabilized thereafter, indicating that finding new partners
is problematic from the beginning of a match.

3 Results

To show the impact of time redistribution, first, the evolution of moves is simulated
when agents play a traditional PD game with their neighbors in the BA and WS
networks. In any network, a player starts a game with a gaming request to a neighbor.
In simulations, all the agents in the network are selected one by one, following a
random sequence. For a selected agent, it evenly allocates the time left to its requests



to the uncoordinated neighbors. If the requested neighbor has enough time to accept
a gaming request, he will accept it. After one round of the game, agents will uniformly
update their moves with the Zero-Determinant Extortionate strategy proposed in [50].
The strategy will wipe the cooperators out in 100 rounds. If one agent defects in a
round, the gaming pair will be taken apart with a certain probability. The separation
means that the time assigned to the pair will be redistributed in the next round. More
details on the simulations will be provided later in Section Simulation on the social
networks.

In Fig. 3(a) and 3(b), the results show that the level of cooperation decays as the
rounds increase for agents playing the ‘divide-and-conquer’ (D&C) games [4, 39, 40]
in both BA and WS networks. After being affected by the temporal mechanisms, the
rates of decay slow down, as shown in Fig. 3(c) and 3(d). The differences in the level
of cooperation between the temporal games and the D&C games [4, 39, 40] are shown
in Fig. 3(e) and 3(f), which will be amplified when human subjects play the games.
The amplification may originate from the S (r) shown in Fig. 3(g) and 3(h), which
will be much lower when humans play the temporal games.
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Fig. 3 Evolution of the average proportion of cooperation (P ()} in the ‘divide-and-conquer’ (D&C)
and temporal gaming networks. (a) and (c) show (P. (r)) of the D&C games and temporal games
in the BA networks, respectively. (b) and (d) show (P (r)) of the two types of games in the WS
networks, respectively. (e) and (f) show the differences of (P. (r)) between the D&C games and
the temporal games in the BA and WS networks, respectively. Each plot denotes the average of 10
simulation runs. As the system evolves dramatically at the beginning of the experiments, the results
are shown in semi-log coordinates.

To verify the above theoretical results, we invited 183 volunteers to attend eight
online experiments. For clarity, the basic information of each match is summarized in
Table 1.

By comparing Fig. 4(a) with Fig. 4(b) and Fig. 4(c) with Fig. 4(d), one can see
that the decay of P, (r) in the temporal games is slower than that in the D&C games.
The result confirms the theoretical prediction, indicating that the limitation on time
promotes the level of cooperation in gaming over a real social network.

To explain the observed behavior, the average available time S (r) is measured
for four time-involved matches. The evolution of S (r) for the two BA networks and



Table 1 The basic information of matches.

Game Number Game Type Type of Network | Number of Participants || Number of Rounds || Corresponding Panel in Fig. 4
G1221 D&C BA 39 13 Fig. ()
G1230 D&C BA 17 16 Fig. 4(a)
G646 Temporal Games BA 50 11 Fig. 4(b) and Fig. 4(¢)
G903 Temporal Games BA 44 28 Fig. 4(b) and Fig. 4(f)
G1228 D&C WS 34 13 Tig. 4(c)
G1234 D&C WS 21 15 Fig. 4(c)
G936 Temporal Games WS 22 24 Fig. 4(d) and Fig. 4(g)
G933 Temporal Games WS 22 28 Fig. 4(d) and Fig. 4(h)

two WS networks are shown in Fig. 4(e)-Fig. 4(h), respectively. For clarity, the basic
information of matches is listed in Table 1. One can see that S (r) fluctuates around
a small positive value in the four panels, revealing the difficulty of finding new part-
ners when humans play the temporal games is more significant than the theoretical
prediction. The difference in P, (1) between the theoretical prediction and the human
behavior suggests that the rising of the difficulty of finding new partners may lead to
the promotion of P, (r), which to some extent explains why the limited time promotes
the level of cooperation in a real social network.

The other behavior that should be noted is that the level of cooperation generally
decays with the increasing rounds in Fig. 4. This behavior is caused by the num-
ber of rounds for each match being limited, although it is random. This limitation
mainly comes from the time of the subjects, since it is complicated to ask about 100
volunteers to play online for more than one hour simultaneously. Even reasonable par-
ticipation fees and attractive rewards were paid to the winners of each match. Some
of the winners’ strategies will be shown in Section Top Voted Strategies of the
Supplementary Information (SI), where one can see that the level of cooperation
decays when the participants guess that the match is ended.

4 Discussion

As a theoretical framework closer to realistic scenarios, the proposed temporal game
has demonstrated its ability to illuminate complex behaviors in the real social experi-
ment presented. The human behaviors revealed from the human temporal games were
not or rarely reported in the literature. When the available time resources of indi-
viduals in the gaming network are scarce, the individuals are more likely to maintain
the currently existing relationships through cooperation. The underlying mechanism
is that interactions are not obligated but spontaneous. If an individual’s time resource
cannot afford the requested time duration of the interaction, he will have no choice
but abandon it, which actually makes him much harder to find new partners. The
accordance of empirical and simulation results confirms the effectiveness of the mech-
anism. The new finding reveals a fundamental reason for lasting altruistic behaviors in
real human interactions, providing a new perspective in understanding the prevailing
human cooperative behaviors in temporal collaboration systems.

It should be noted that the limitation of time is ubiquitous in human collaboration
systems, which is essentially different from the incentives, such as global reputation [51,
52] and anonymity [53], associated with human psychology. In a sense, the behavior
observed in the performed experiments is more deterministic than random. Introducing
some other mechanisms like rewarding [54] and costly punishment [55, 56] to the
temporal systems will be a natural extension of study in this direction. Apart from
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Fig. 4 Evolution of the proportion of cooperation P (r) and the average available time S (r) in the
temporal games played by human subjects. (a) and (c) show the results of the D&C games on the BA
networks and WS networks, respectively. (b) and (d) show the results of the temporal games on the
BA networks and WS networks, respectively. Horizontal coordinates denote the number of rounds.
(e) and (f) show the results of two temporal games on the BA networks. (g) and (h) show the results
of two temporal games on the WS networks.

the mechanisms, the impact from different types of games, for instance, the snow-drift
game [57] and the public goods game [19], is also of interest and significance.

This work considers the temporal game framework and presents some rather sur-
prising new results. There are several interesting future directions for investigation
in terms of both theoretical and experimental studies. However, the basic theoretical
model and the key experimental results presented in this paper for temporal games are
the first steps to modeling realistic networks with time-dependent interactions. Such
realistic modeling will allow better analysis, prediction, and design for the emergence
of cooperation from network models, profoundly impacting disciplines on preserving
natural resources to designing institutional policies.
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5 Materials and Methods

5.1 Experimental design

In order to build an experimental environment as close as possible to realistic tem-
poral two-player collaborative systems, two issues are considered in the performed
empirical study. First, the interactive time is determined by negotiation. The setting
resembles the temporal properties of a real game in society. A dynamic reconnection
is implemented in the network by rejecting a friend’s request and then proposing a
game with another friend [29, 31]. Second, a D&C' framework, also referred to as tar-
geted decision, is adopted, in which the individuals who propose a game or accept
a gaming request have to decide whether to cooperate or to defect in each round of
the game [4, 39, 40]. Most existing research on gaming networks is performed under
a framework where individuals choose the same move to interact with all their neigh-
bors [29-31]. On the contrary, in real-world scenarios, people do not normally defect
their long-term partners after being defected by some other partners. In a realis-
tic social network, they would choose a specific move to play with another partner,
referred to as the D&C game in the literature [39, 40]. When the diffusive decision
scheme is replaced by the D&C or a targeted decision scheme, the impact of dynamic
reconnection on promoting cooperation will become negligible [4].

The coupling between temporal interaction and rational decision-making can be
seen everywhere in real life. Nevertheless, the existing theoretical frameworks seem
insufficient to explain the widespread cooperation in temporal social games. Under the
framework of temporal games, a series of online game experiments were performed. The
experimental data reveal a surprising finding: limitation of time promotes cooperation
in temporal games. This finding, on the one hand, urges us to reconsider how much
the dynamic nature of networks can impact human cooperation; on the other hand,
it demonstrates the potential of the temporal game framework to explain various
collective behaviors in real two-player collaborative systems.

5.2 Experimental setup and game rules

A series of online human subject experiments were designed to build a two-player col-
laborative system of rational individuals. A total of 183 human subjects participated
in 8 matches in the experiment. The majority of subjects are students from Tongji
University and Southeast University in China. To implement the designed frame-
work, a novel online gaming platform was developed, called the War of Strategies
(http://strategywar.net, see (Section Experimental Platform and Interface of SI
for the details of the platform).

In the online experiments, participants played a traditional PD game, where C' and
D were the only available actions. Each participant interacted with the individuals
who had agreements with him in one round, after which the agreements needed to be
redrafted.

Each match on the platform comprises two stages. In the first stage, the system
generates a network with a social network model. The subjects are then allocated
to the nodes of the network. In this setting, the connections among the subjects are
randomly predetermined. The second stage is an n-round iterated PD game, where
10 < n < 30 is unknown to individuals so as to avoid the ending-game effects.

11



In each round of the game, individuals can make requests to interact with their
friends. In a request, the duration of the interaction is suggested by the sender and
shown to the target. The request can be accepted, denied, ignored, or canceled. Once
an individual accepts it, this individual has to choose a move as his response. The
payoff of the game is proportional to the time duration suggested in the request, which
is a part or all of the sender’s time resource. Once the request is sent out, this part
of the resource will be occupied before receiving a response, which cannot be used
again in any other interaction. If the request is accepted, the time resource will be
consumed. If the request is denied, ignored, or canceled, the time resource will be
returned to the sender. The total time resource assigned to each individual is 1,440
units in each round, mimicking one day in real life. The experiment adopts 1,440 to
help the participants to understand its meaning, the value of which is irrelevant to
the final results. For all the individuals, each round lasts for 60 seconds. The initial
aggregated payoff for each individual is 0. The payoff matrix is the same as that shown
in Fig. 1.

During a match, the individual IDs are randomly generated. The individuals can
only see their own game records, where each record includes the moves of both sides
and the time durations. The topological structures beyond their immediate neighbors
are invisible to them. Besides, individuals are shown their aggregated payoff, time
resources, number of rounds played, and their remaining decision time.

5.3 Simulation on the social networks

Here is the process of the simulation.

Step 1: Generate a structured population such as the BA network [42] with degree
mg = m = 3 or WS small-world network with P,.cyire = 0.1 and K = 6. Randomly
assign the agents to be cooperators with a probability of 0.5. The size of the population
is set to 1,024.

Step 2: Shuffle the agent list and iteratively ask an agent to broadcast gaming
requests to its neighbors. In each request, the agent uniformly allocates his rest time to
those uncoordinated neighbors, i.e., p;; (1) = m, where j € N; — P (r — 1).
If a neighbor has enough time to accept the request, he will accept it.

Step 3: Each pair of the matched agents play the game for one round and then
updates their moves, following the Zero-Determinant Extortionate strategy proposed
in [50].

Step 4: If an agent defects in a round, the pair will be taken apart with a probability
of 0.5, that is, x = [0,0.5,0.5,0.5].

Step 5: Repeat Steps 2, 3, and 4 until reaching the preset number of rounds.
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