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Abstract

Temporal networks are obtained from time-dependent interactions between indi-
viduals. The interaction can be an email, a phone call, a face-to-face meeting,
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or a collaboration. We propose a temporal game framework where interac-
tions between rational individuals are embedded into two-player games with a
time-dependent aspect of interaction. This allows studying the time-dependent
complexity and variability of interactions and how they affect prosocial behavior.
Based on a simple mathematical model, we find that the level of cooperation is
promoted when the time of collaboration is limited and identical for every individ-
ual. We confirm and validate this with a series of systematic human experiments
that forms a foundation for comprehensively describing human temporal interac-
tions in collaborative environments. Our research reveals an important incentive
for human cooperation, and it lays the foundations for better understanding this
fascinating aspect of our nature in realistic social settings.

Keywords: temporal networks, non-cooperative game, human subjects, cooperation

1 Introduction

Many complex collaborative systems in nature, society, and engineering can be mod-
eled through networks. In a network, nodes represent collaborating individuals, and
links represent their friendships [1]. In the early stage of network modeling, links are
simplified to be weightless, undirected, and static. In order to improve the ability to
depict real systems, weighted [44], directed [34], and dynamic [29] network models
have been put forward successively. The application of these network models in var-
ious fields has fully proved that the closer the framework is to reality, the stronger
its ability to explain behaviors. As an intriguing behavior in human collaborative sys-
tems, the emergence of cooperation has attracted researchers from social and natural
sciences for half a century [7, 18, 36, 37]. Although we are certainly not exempt from
selfishness and the fundamental principles of Darwinian evolution, cooperation is nev-
ertheless ubiquitous across human societies [31]. While the impetus for our strong
cooperative drive has been linked to the difficulties of the genus Homo in rearing
offspring that survived and to the emergence of alloparental care [24], and to the for-
mation of alliances in times of conflicts [6], it is still puzzling as to why we have,
as a species, achieved such high levels of cooperation. Our altruistic behavior distin-
guishes us markedly from other mammals, and they indeed form the bedrock for our
astonishing evolutionary success.

The studies of human cooperation in n-person games begin with population
games, also known as mean-field games [9, 22, 28]. In such a well-mixed population,
cooperation can hardly prevail with imitative update rules when individuals play non-
cooperative games such as the prisoner’s dilemma [47]. If the population exhibits a
relatively stable social structure, the consequence may be different [2, 14, 15, 17, 25,
33, 39–42, 49] – a finding with roots in the seminal paper by Nowak and May [32],
who observed clusters of cooperators on a square lattice that protected them from
invading defectors. Nevertheless, social networks are seldom static. We disconnect,
reconnect, and then form connections with new people over time. This realization
has revealed new mechanisms for cooperation that may sustain cooperative behavior
under extremely adverse conditions, when the temptation to defect is high and where
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on static networks cooperation would long perish [35]. An individual also does not
interact with all his friends all the time but likely does so only occasionally.

To account for the above aspects, dynamic networks are studied. The implica-
tions of dynamic interaction patterns on human cooperation are indeed profound,
and recent human experiments, as well as theoretical research, confirm this to the
fullest [12, 38, 44, 48, 50, 52]. It was argued, for example, that such observations
demonstrate the effect of reputation [29]. Individuals may connect with unfamiliar
individuals after browsing their gaming records while cutting the existing connec-
tions with unsatisfactory partners. Some may take breaking ties, instead of performing
defection, as a way to penalize defectors [38]. Interestingly, the implication of dynamic
reconnection fades out when individuals choose specific moves to play games with their
partners [29]. In this light, an interesting question is whether the dynamic reconnec-
tion is relevant to the level of cooperation in a human collaborative system if there is
a time limit on the duration of a game? From the perspective of biological markets [5],
the dynamic reconnection in such a system is a reallocation of collaboration time in a
time-limited collaborative environment. Is too much emphasis put on the structure of
our social networks, resulting in neglecting the temporal aspects of our interactions?
In what follows, we will address these critical questions in detail.

Due to the complexity of temporal systems, using evolutionary game theory to
model individuals’ collaborations is reasonably challenging. First of all, the evolution
mechanism of a temporal system itself is complicated, difficult to describe by a simple
mathematical model. Secondly, in the temporal games, an individual strategy involves
not only the moves in games but also the allocation of time in a round. This open-
ness allows individual strategies and network topologies to co-evolve in more flexible
ways than the existing dynamical gaming networks [30, 57], which further raises the
difficulty of modeling the coupled systems.

In this paper, we present a temporal gaming framework upon the structure of tem-
poral networks [23, 26]. The goal is to test the impact of limited time on the level of
cooperation in two-player collaborative systems. Such systems are common in reality.
For instance, it typically takes a team to accomplish a project when applying for fund-
ing. The project leader typically would collaborate with a member to accomplish a
specific part of it. Correspondingly, the member or the leader can also be involved in
more than one project. Simultaneously, the total number of working months for each
participant is limited and identical. In such a scenario, a temporal gaming network
is naturally composed. Admittedly, the collaboration between two team members is
closer to the stag hunt game than the Prisoner’s Dilemma (PD) game. Consider coop-
eration normally dominates the collaboration system playing the stag hunt game, one
can hardly differentiate the impacts from other mechanisms. We adopt the PD game
in this paper.

One of our key contributions is a detailed online experiment for the theoretical
framework. We first establish a gaming platform to implement a temporal game sce-
nario. Next, we test the level of cooperation on the platform in a divide and conque
(D&C) mode [29, 51, 56], where the difference from the settings of the existing
works [12, 20, 38, 39] is the targeted decisions. Finally, we test the level of cooperation
on the platform in a time-involved mode, where the time limitation for individuals and
targeted decisions are considered. The reasons for adopting these mechanisms will be
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provided in Section Experimental design. What we are looking for is whether the lim-
itation on time resources governs human cooperation in the games. In what follows,
we will focus on this factor.

To clarify the impact of the limited time, we invited 183 human subjects and
designed a set of comparative online experiments. In a match, the participants are
allocated to the nodes of pre-generated networks. We test two classes of networks,
the Barabási and Albert’s scale-free network [3] and Watts and Strogatz’s small-world
networks, since they are the most well-known social network models. We show that the
limitation to the individuals’ time resources statistically promotes the participants’
level of cooperation, which aligns with the theoretical prediction presented below.

2 Theoretical framework of temporal games

2.1 Temporal game model

In a two-strategy (i.e., only two moves are allowed) game, define i’s strategy as Ωi =(
Xi

1−Xi

)
, where Xi can only take 1 or 0 in each game. If Xi = 1, i is a cooperator

denoted by C. If Xi = 0, i is a defector denoted by D. Take the PD game [27] for
example, in the PD game, the payoff table is a 2 × 2 matrix. Given i’s strategy, i’s
payoff in the game playing with all his neighbors (denoted by Ni) can be written

as Gi = ΩT
i

(
R S
T P

)∑
j∈Ni

Ωj . In the PD model, it gains T (temptation to defect)

for defecting a cooperator, R (reward for mutual cooperation) for cooperating with
a cooperator, P (punishment for mutual defection) for defecting a defector, and S
(sucker’s payoff) for cooperating with a defector. Normally, the four payoff values
satisfy the following inequalities: T > R > P > S and 2R > T +S. Here, 2R > T +S
makes mutual cooperation the best outcome from the perspective of the collective.

The temporal game model proposed in this paper is based on the game model [51,
56] taking into account the time of interactions. As the model is time-involved, each
interaction is assigned a specific duration. The total game time for each individual
in a round is set to be constant and the same for all individuals to be realistic to
real-life scenarios. An individual’s interactions with different partners are assumed,
independent. The payoff of the game between individuals i and j can be written as

si,j = ΩT
i,j

(
R S
T P

)
Ωj,i . In the temporal games, the payoff of each interaction is

proportional to the time it spans. In one round of the game, the accumulated payoff
of individual i is defined as

Λi =
∑
j∈Ni

τi,j
T

× si,j , (1)

where Ni is the set of i’s neighbors; τi,j is the duration of the interaction between
individuals i and j. As shown in Fig. 1A, let i and j be the individuals colored red
and blue. Then Ni = 4 and τi,j = 8. Notably, τi,j should satisfy the constraints of
τi,j ∈ [0,T] and

∑
j∈Ni

τi,j ⩽ T. Here, T is the total time resource of an individual in

each round, which is a constant for all individuals in our model. In Fig. 1A, T = 24.
If individual i does not want to collaborate with j, then i will not apply for a game
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with j any longer. Simultaneously, i will reject j’s gaming request. In this case, τi,j
will be 0 as the relation between the red and the green in Fig. 1A.

8 hours16 hours

A. Action Stage B. Payoffs

8/24×5+16/24×3 = 3.67

8/24×0 = 0

16/24×3 = 2

C D

0

0

Fig. 1 Illustration of the temporal game. Panel A shows a round of the temporal game among 5
individuals. The individual colored red has 4 friends, in which the individuals colored orange and
blue are his gaming partners. If the game beween two individuals lasts for 24 hours, the payoff of a
cooperator is 3 and 0, gaining from a cooperator and a defector, respectively. The payoff of a defector
is 5 and 1, gaining from a cooperator and a defector, respectively.

Let Pi be the set of partners who interacted with i in the round, Eq. 1 can be
written as

Λi =
∑
j∈Pi

τi,j
T

× si,j , (2)

where τi,j is greater than 0. For the red individual in Fig. 1A, the orange and the blue
are his partners in this round. Based on Eq. 2, the payoffs of the 5 individuals are
listed in Fig. 1B. In a mean-field view, Eq. 2 can be written as

Λki =
∑
kj

τki,kj

T
P (ki, kj) ski,kj , (3)

where P (ki, kj) is the probability that a link exists between i and j, dependent on the
topology of the collaborative network. We show an illustration of such a collaborative
network in Fig. 2A. To clarify the generating procedure of the network, we provide the
communication log among the individuals in this round in Fig. 2B. In the log, Alice
tried collaborating with Tom for T, while Tom had agreed to work with Jerry and
Frank when he received Alice’s request. Thus, Alice turned to Frank and Jerry, but it
was a bit late to make appointments with them as they were partially engaged. As a
result, Alice took 0.8T to play with Frank and Jerry and wasted 0.2T in this round.
For a heterogeneous network as the Barabási-Albert (BA) networks [4], P (ki, kj) ∼
kjP (kj)

⟨k⟩ . For a homogeneous networks as the Watts and Strogatz (WS) networks [54],

P (ki, kj) ∼ P (kj).
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No. From To Communication Records
Jerry Bob Request for interaction with 0.2T.
Jerry Tom Request for interaction with 0.4T.
Jerry Alice Request for interaction with 0.4T.
Bob Jerry OK.

Frank Tom Request for interaction with 0.6T.
Tom Jerry OK.
Tom Frank OK.
Alice Tom Request for interaction with T.
Frank Alice Request for interaction with 0.4T.
Tom Alice Sorry.

⑪ Alice Frank OK.
⑫ Alice Jerry OK.

Communication Log

Fig. 2 Illustration of the temporal games in a two-player collaborative system. (A) One round of
the temporal game on a social network. The blue circle is Jerry’s neighborhood. Alice, Bob, and
Tom are Jerry’s partners in this round. The color of a time slot represents a partner; for instance,
yellow represents Frank. C or D in the time slot denotes the move from the individual at the tail
of a directed dashed line to the indicated specific partner. (B) The generating procedure of the
circumstance presented in (A). In the communication log, the records are sorted by their sequence
numbers in ascending order. Only if both players agree to collaborate (the response to a request is
OK) will their colors appear in each other’s collaboration schedule, i.e., a time slot in (A).

2.2 Proportion of cooperation in the temporal game

In the temporal game, each game between partners is coupled with a duration. There-
fore, the level of cooperation should be measured by the duration and their moves.
We define the proportion of cooperation as Pc = TC

TG
, where TG is the total duration

of the moves and TC is the total duration of cooperation in the games.
Note that current studies on decision time [10, 11] in experimental psychology

and response time in experimental economics [45, 55] focus on the time of making a
decision rather than the duration of moves. Therefore, the object of such studies is
different from that of temporal games.

2.3 Mathematical modeling the available time of individuals

As is known, for each game between two players, each player has to experience one of
the four possible cases, namely, cooperating with a cooperator (CC), cooperating with
a defector (CD), defecting a cooperator (DC), and defecting a defector (DD). We define
a state vector Φ by (ΦCC ,ΦCD,ΦDC ,ΦDD), in which each entry corresponds to the
probability of experiencing the respective outcome. Generally, a memory-one strategy
can be written as p = (pCC , pCD, pDC , pDD), corresponding to the probabilities of
cooperating under each of the previous outcomes. Since players update their moves
with the memory-one strategies in each time step, the update can be considered a
Markov process. One can find a Markov transition matrix Mi to realize the update.
For two players, i and j, we have

Mi=

pCCsCC pCC (1 − sCC )(1 − pCC )sCC (1 − pCC )(1 − sCC )
pCDsDCpCD(1 − sDC )(1 − pCD)sDC(1 − pCD)(1 − sDC )
pDCsCDpDC (1 − sCD)(1 − pDC )sCD(1 − pDC )(1 − sCD)
pDDsDDpDD(1 − sDD)(1 − pDD)sDD(1 − pDD)(1 − sDD)

 , (4)

where the vectors p = (pCC , pCD, pDC , pDD) and s = (sCC , sCD, sDC , sDD) denote i
and j’s probabilities of cooperation in the next round after experiencing CC, CD, DC,
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and DD cases, respectively. Then the evolution of i’s state vector Φi(t) is given by

Φi(r) = Φi(r − 1)Mi. (5)

To model the the available time of individuals in the temporal games, we first
assume that no players at round r − 1 reject the requests from an individual i if they
are available. The time left for him to make use of in round r can be denoted by
Si (r) = T−

∑
j∈Pi

τuij(r−1), where µij (r − 1) denotes the random portion of time in

the request from i in round r − 1. If i applies for playing with j for Si (r)µij (r), the
successful probability of the request is

ωi,j (r, µij (r)) =

{
1, Sj (r) ≥ Si (r)µij (r),
0, Sj (r) < Si (r)µij (r),

(6)

assuming j wish to play. Therefore, the expectation of difference in individual i’s
available time from round r to r + 1 is

ϱi (r) = −
∑

j∈Ni−Pi(r−1) ωi,j (r, µij (r)) (Si (r) (7)

+
∑

l∈Pi(r−1) αil (r − 1)

Φil (r) ·

χi,CC

χi,CD

χi,DC

χi,DD



µij (r) ,

where χi denotes i’s probabilities of reassigning time after experiencing the four
outcomes. αil (r) denotes the time share which i assigns to l at round r. Note that∑

l∈Pi

αil (r) + Si (r) = 1. (8)

Considering Si (r) ≥ 0 for all r, the iterative formula of Si (r) should be written as

Si (r + 1) = Relu (ϱi (r) + Si (r)) , (9)

where Relu (x) =

{
x, x ≥ 0,
0, x < 0.

As the evolution procedure of Si (r) in the system can

not be modeled in a mean-field way, one can hardly present an analytical solution to
it. Therefore, we will present the simulation results and empirical results from human
online experiments in the following. In the simulations, we uniformly set the agents
to adopt the same strategy to have the results reproducible. Let the number of agents

be NA. We will show that the average available time S (r) =
∑

i Si(r)

NA
falls to a low

level at the first round. It is stablized after then, indicating that finding new partners
is problematic from the beginning of a match.

3 Results

To show the impact of time redistribution, we first simulate the evolution of moves
when agents play a traditional Prisoner’s dilemma (PD) game with their neighbors in
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the BA and WS networks. In a network, a player starts a game with a gaming request
to a neighbor. In our simulations, all the agents in the network are selected one by one,
following a random sequence. For a selected agent, it evenly allocates the time left to
its requests to the uncoordinated neighbors. If the requested neighbor has enough time
to accept the gaming request, he will accept it. After one round of the game, agents
will uniformly update their moves with the Zero-Determinant Extortionate strategy
proposed in reference [46]. The strategy will wipe the cooperators out in 100 rounds.
If an agent defects in a round, the pair will be taken apart with a certain probability.
The separation means the time assigned to the pair will be redistributed next round.
More details on the simulations will be provided in Section Simulation on the social
networks.

In Fig. 3(a) and 3(b), the results show the level of cooperation decays with rounds
for agents playing the ‘divide-and-conquer’ (D&C) games [29, 51, 56] in both networks.
After being affected by the temporal mechanisms, the rates of decay slow down in
Fig. 3(c) and 3(d). We show the difference in the level of cooperation between the
temporal games and the D&C games [29, 51, 56] in Fig. 3(e) and 3(f), which will
be amplified when human subjects play. The amplification may originate from S (r)
shown in Fig. 3(g) and 3(h), which will be much lower when humans play the temporal
games.
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Fig. 3 Evolution of the average proportion of cooperation ⟨Pc (r)⟩ in the ‘divide-and-conquer’ (D&C)
and temporal gaming networks. (a) and (c) show ⟨Pc (r)⟩ of the D&C games and temporal games
in the BA networks, respectively. (b) and (d) show ⟨Pc (r)⟩ of the two classes of games in the WS
networks, respectively. (e) and (f) show the difference of ⟨Pc (r)⟩ between the D&C games and the
temporal games in the BA and WS networks, respectively. Each plot denotes the average of 10
simulation runs. As the system evolves dramatically at the beginning of the experiments, we show
the results in semi-log coordinates.

To test the validity of our theoretical results, we invite 183 volunteers to attend
8 online experiments. For conciseness, we show the basic information of each match
in Table 1. After comparing Fig. 4(a) with Fig. 4(b) and Fig. 4(c) with Fig. 4(d),
one can see that the decay of Pc (r) in the temporal games is slower than that in the
D&C games. The result confirms our theoretical prediction, indicating the limitation
on time promotes the level of cooperation in gaming social networks.
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Table 1 The basic information of matches.

Game Number Game Type Type of Network Number of Participants Number of Rounds Corresponding Panel in Fig. 4
G1224 D&C BA 39 13 Fig. 4(a)
G1230 D&C BA 17 16 Fig. 4(a)
G646 Temporal Games BA 50 11 Fig. 4(b) and Fig. 4(e)
G903 Temporal Games BA 44 28 Fig. 4(b) and Fig. 4(f)
G1228 D&C WS 34 13 Fig. 4(c)
G1234 D&C WS 21 15 Fig. 4(c)
G936 Temporal Games WS 22 24 Fig. 4(d) and Fig. 4(g)
G933 Temporal Games WS 22 28 Fig. 4(d) and Fig. 4(h)

To explain the behavior, we measure the average available time S (r) in the four
time-involved matches. The evolution of S (r) for the two BA networks and two WS
networks are shown in Fig. 4(e)-Fig. 4(h), respectively. For conciseness, the basic infor-
mation of matches is listed in Table 1. One can see that S (r) fluctuates around a
small positive value in the four panels, revealing the difficulty of finding new partners
when humans play the temporal games is more significant than our theoretical predic-
tion. The difference in Pc (r) between the theoretical prediction and human behavior
suggests that the rising of the difficulty of finding new partners may lead to the pro-
motion of Pc (r), which to some extent explains why the limited time promotes the
level of cooperation in a real social network.

The other behavior which should be noted is that the level of cooperation gener-
ally decays with rounds in Fig. 4. The behavior is caused by the number of rounds for
each match being limited, although it is random. This limitation mainly comes from
the time of the subjects, since it is complicated to ask about 100 students to play
online for more than an hour simultaneously, even though we pay them acceptable
participation fees and provide attractive rewards for the winners of each match. We
show some of the winners’ strategies in Section Top Voted Strategies of Supple-
mentary Information (SI). One can see that the level of cooperation decays when
the participants guess that the match is ending.

4 Discussion

As a theoretical framework closer to realistic scenarios, the temporal game has demon-
strated its capacity to illuminate complex behaviors in our social experiment. The
human behaviors revealed from the human temporal games were rarely reported previ-
ously in the literature. When the available time resources of individuals in the gaming
network are scarce, the individuals are more likely to maintain the current relation-
ships through cooperation. The underlying mechanism is that interactions are not
obligated but spontaneous. If an individual’s time resource cannot afford the requested
duration of the interaction, he will have no choice but to abandon it, which makes it
much harder to find new partners. The accordance of empirical and simulation results
confirms the significance of the mechanism. Our finding reveals a fundamental reason
for lasting altruistic behaviors in real human interactions, providing a novel perspec-
tive for understanding the prevailing of human cooperative behaviors in temporal
collaboration systems.

Note that the limitation on time is an objective fact in human collaboration
systems, which is essentially different from the incentives, such as global reputa-
tion [16, 19] and onymity [53], associated with human psychology. In a sense, the
behavior observed in our experiments is more deterministic. Introducing some other
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Fig. 4 Evolution of the proportion of cooperation Pc (r) and the average available time S (r) in the
temporal games played by human subjects. (a) and (c) show the results of the D&C games in the BA
networks and WS networks, respectively. (b) and (d) show the results of the temporal games in the
BA networks and WS networks, respectively. Horizontal coordinates denote the number of rounds.
(e) and (f) show the results of two temporal games in the BA networks. (g) and (h) show the results
of two temporal games in the WS networks.

mechanisms like reward [43] and costly punishment [8, 13] to the temporal systems
will be a natural extension in this direction. Apart from the mechanisms, the impact
from different types of games, for instance, the snow-drift game [21] and the public
goods game [42], is also of particular interest.

Our work considers the temporal game framework and presents some surprising
results. There are several interesting future directions, both in terms of theoretical and
experimental results. However, the basic theoretical model and the key experimental
results we present in this work for temporal games are the first steps to modeling
realistic networks with time-dependent interactions. Such realistic modeling will allow
better analysis, prediction, and design principles for the emergence of cooperation in
network models, profoundly impacting disciplines from preserving natural resources
to designing institutional policies.
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5 Materials and Methods

5.1 Experimental design

In order to build an experimental environment as close as possible to natural temporal
two-player collaborative systems, two realistic factors are considered in our empirical
study. First, the interactive time is determined by negotiation. The setting restores
the temporal property of a game in reality. A dynamic reconnection is implemented in
the network by rejecting a friend’s request and then proposing a game with another
friend [38, 50]. Second, a ‘divide-and-conquer’ (D&C) framework, also referred to as
targeted decision, is adopted, in which the individuals who propose a game or accept
a gaming request have to decide whether to cooperate (C) or to defect (D) in each
round of the game [29, 51, 56]. Most existing research on gaming networks is performed
under a framework where individuals choose the same move to interact with all their
neighbors [12, 38, 50]. On the contrary, in real-world scenarios, people do not normally
defect their long-term partners after being defected by other partners. In a realistic
social network, they would choose a specific move to play with a partner, referred
to as the D&C game in the literature [51, 56]. When the diffuse decision scheme is
replaced by the D&C or targeted decision scheme, the impact of dynamic reconnection
on promoting cooperation will become negligible [29].

The coupling between temporal interaction and rational decision-making can be
seen everywhere in real life. Still, the existing theoretical frameworks seem insufficient
to explain the widespread cooperation in such temporal games. Under the framework
of temporal games, we designed a series of online game experiments. With the experi-
mental data, we present a surprising finding: limitation of time promotes cooperation
in temporal games. This finding, on the one hand, urges us to reconsider how much
the dynamic nature of networks can impact human cooperation. On the other hand,
it implies the potential of the temporal game framework to explain various collective
behaviors in real two-player collaborative systems. Our results have a profound impact
on the study of pro-social behavior. By accounting for the time-dependent aspect to
model a realistic network, we present an interesting finding which can improve our
understanding of widespread cooperation in time-dependent collaborations.

5.2 Experimental setup and game rules

A series of online human subject experiments were designed to build a two-player
collaborative system of rational individuals. A total of 183 human subjects partici-
pated in 8 matches in the experiment. The majority of subjects are students from
Tongji University and Southeast University in China. To implement the designed sce-
nario, a novel online gaming platform was developed, called the War of Strategies
(http://strategywar.net, see (Section Experimental Platform and Interface of SI
for the details of the platform).

In the online experiments, participants played a traditional Prisoner’s dilemma
(PD) game, where C andD were the only available actions. Each participant interacted
with the individuals who had agreements with him in one round, after which the
agreements need to be redrafted.

Each match on the platform comprises two stages. In the first stage, the system
generates a network with a social network model. The subjects are then allocated to
the nodes of the network. Therefore, the connections among the subjects are randomly
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predetermined. The second stage is an n-round iterated PD game, where 10 ≤ n ≤ 30
is unknown to individuals to avoid the ending-game effects.

In each round of the game, individuals can make requests for interactions with
their friends. In a request, the duration of the interaction is suggested by the sender
and shown to the target. The request can be accepted, denied, ignored, or canceled.
Once an individual accepts it, the individual has to choose a move as a response. The
payoff of the game is proportional to the duration suggested in the request, which is a
part or all of the sender’s time resource. Once the request is sent out, this part of the
resource will be occupied before receiving a response, which cannot be used again in
any other interaction. If the request is accepted, the time resource will be consumed.
If the request is denied, ignored, or canceled, the time resource will be returned to
the sender. The total time resource assigned to each individual is 1, 440 units in each
round, simulating one day in real life. We adopt 1, 440 to help the participants to
understand its meaning, the value of which is irrelevant to our results. For all the
individuals, each round lasts for 60 seconds. The initial aggregated payoff for each
individual is 0. The payoff matrix is the same as that in Fig. 1.

During the match, the individual IDs are randomly generated. The individuals can
only see their own game records, where each record includes the moves of both sides
and the time durations. The topological structures beyond their immediate neighbors
are invisible to them. Besides, individuals are shown their aggregated payoff, time
resources, number of rounds played, and their decision time remaining.

5.3 Simulation on the social networks

Here, we will present the process of the simulation. Step 1, Generate a structured
population such as the Barabási and Albert’s scale-free network [3] with degree m0 =
m = 3 or Watts and Strogatz’s small-world network with Prewire = 0.1 and K = 6.
Randomly assign the agents to be cooperators with a probability of 0.5. The size of
the population is set to 1,024. Step 2, Shuffle the agent list and iteratively ask an
agent to broadcast gaming requests to its neighbors. In each request, the agent evenly
allocates its time left to its uncoordinated neighbors, i.e., µij (r) =

1
|Ni−Pi(r−1)| , where

j ∈ Ni−Pi (r − 1). If a neighbor has enough time to accept the request, he will accept
it. Step 3, Each pair of the matched agents game for one round and update their moves,
following the Zero-Determinant Extortionate strategy proposed in reference [46]. Step
4, If an agent defects in the round, the pair will be taken apart with a probability
of 0.5, that is, χ = [0, 0.5, 0.5, 0.5]. Step 5, Repeat Steps 2, 3, and 4 until the preset
number of rounds.
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