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Temporal networks are obtained from time-dependent interactions
between individuals. The interaction can be an email, a phone call,
a face-to-face meeting, or a collaboration. We propose a tempo-
ral game framework where interactions between rational individuals
are embedded into two-player games with a time-dependent aspect
of interaction. This allows studying the time-dependent complexity
and variability of interactions and how they affect prosocial behav-
ior. Based on a simple mathematical model, we find that the level
of cooperation is promoted when the time of collaboration is limited
and identical for every individual. We confirm and validate this with a
series of systematic human experiments that forms a foundation for
comprehensively describing human temporal interactions in collab-
orative environments. Our research reveals an important incentive
for human cooperation, and it lays the foundations for better under-
standing this fascinating aspect of our nature in realistic social set-
tings.
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Many complex collaborative systems in nature, society,1

and engineering can be modeled through networks. In a2

network, nodes represent collaborating individuals, and links3

represent their friendships (1). In the early stage of network4

modeling, links are simplified to be weightless, undirected,5

and static. In order to improve the ability to depict real6

systems, weighted (2), directed (3), and dynamic (4) network7

models have been put forward successively. The application8

of these network models in various fields has fully proved9

that the closer the framework is to reality, the stronger its10

ability to explain behaviors. As an intriguing behavior in11

human collaborative systems, the emergence of cooperation12

has attracted researchers from social and natural sciences for13

half a century (5–8). Although we are certainly not exempt14

from selfishness and the fundamental principles of Darwinian15

evolution, cooperation is nevertheless ubiquitous across human16

societies (9). While the impetus for our strong cooperative17

drive has been linked to the difficulties of the genus Homo18

in rearing offspring that survived and to the emergence of19

alloparental care (10), and to the formation of alliances in20

times of conflicts (11), it is still puzzling as to why we have, as a21

species, achieved such high levels of cooperation. Our altruistic22

behavior distinguishes us markedly from other mammals, and23

they indeed form the bedrock for our astonishing evolutionary24

success.25

The studies of human cooperation in n-person games begin26

with population games, also known as mean-field games (12–27

14). In such a well-mixed population, cooperation can hardly28

prevail with imitative update rules when individuals play non- 29

cooperative games such as the prisoner’s dilemma (15). If the 30

population exhibits a relatively stable social structure, the 31

consequence may be different (16–26) – a finding with roots 32

in the seminal paper by Nowak and May (27), who observed 33

clusters of cooperators on a square lattice that protected them 34

from invading defectors. Nevertheless, social networks are 35

seldom static. We disconnect, reconnect, and then form con- 36

nections with new people over time. This realization has 37

revealed new mechanisms for cooperation that may sustain co- 38

operative behavior under extremely adverse conditions, when 39

the temptation to defect is high and where on static networks 40

cooperation would long perish (28). An individual also does 41

not interact with all his friends all the time but likely does so 42

only occasionally. 43

To account for the above aspects, dynamic networks are 44

studied. The implications of dynamic interaction patterns on 45

human cooperation are indeed profound, and recent human 46

experiments, as well as theoretical research, confirm this to the 47

fullest (2, 29–33). It was argued, for example, that such obser- 48

vations demonstrate the effect of reputation (4). Individuals 49

may connect with unfamiliar individuals after browsing their 50

gaming records while cutting the existing connections with 51
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unsatisfactory partners. Some may take breaking ties, instead52

of performing defection, as a way to penalize defectors (29).53

Interestingly, the implication of dynamic reconnection fades54

out when individuals choose specific moves to play games with55

their partners (4). In this light, an interesting question is56

whether the dynamic reconnection is relevant to the level of57

cooperation in a human collaborative system if there is a time58

limit on the duration of a game? From the perspective of59

biological markets (34), the dynamic reconnection in such a60

system is a reallocation of collaboration time in a time-limited61

collaborative environment. Is too much emphasis put on the62

structure of our social networks, resulting in neglecting the63

temporal aspects of our interactions? In what follows, we will64

address these critical questions in detail.65

Due to the complexity of temporal systems, using evolu-66

tionary game theory to model individuals’ collaborations is67

reasonably challenging. First of all, the evolution mechanism68

of a temporal system itself is complicated, difficult to describe69

by a simple mathematical model. Secondly, in the temporal70

games, an individual strategy involves not only the moves71

in games but also the allocation of time in a round. This72

openness allows individual strategies and network topologies73

to co-evolve in more flexible ways than the existing dynamical74

gaming networks (35, 36), which further raises the difficulty75

of modeling the coupled systems.76

In this paper, we present a temporal gaming framework77

upon the structure of temporal networks (37, 38). The goal is78

to test the impact of limited time on the level of cooperation in79

two-player collaborative systems. Such systems are common80

in reality. For instance, it typically takes a team to accomplish81

a project when applying for funding. The project leader82

typically would collaborate with a member to accomplish a83

specific part of it. Correspondingly, the member or the leader84

can also be involved in more than one project. Simultaneously,85

the total number of working months for each participant is86

limited and identical. In such a scenario, a temporal gaming87

network is naturally composed. Admittedly, the collaboration88

between two team members is closer to the stag hunt game than89

the Prisoner’s Dilemma (PD) game. Consider cooperation90

normally dominates the collaboration system playing the stag91

hunt game, one can hardly differentiate the impacts from other92

mechanisms. We adopt the PD game in this paper.93

One of our key contributions is a detailed online experiment94

for the theoretical framework. We first establish a gaming95

platform to implement a temporal game scenario. Next, we96

test the level of cooperation on the platform in a divide and97

conque (D&C) mode (4, 42, 43), where the difference from the98

settings of the existing works (23, 29, 30, 39) is the targeted99

decisions. Finally, we test the level of cooperation on the100

platform in a time-involved mode, where the time limitation101

for individuals and targeted decisions are considered. The102

reasons for adopting these mechanisms will be provided in Sec-103

tion Experimental design. What we are looking for is whether104

the limitation on time resources governs human cooperation105

in the games. In what follows, we will focus on this factor.106

To clarify the impact of the limited time, we invited 183107

human subjects and designed a set of comparative online108

experiments. In a match, the participants are allocated to109

the nodes of pre-generated networks. We test two classes of110

networks, the Barabási and Albert’s scale-free network (40)111

and Watts and Strogatz’s small-world networks, since they are112

the most well-known social network models. We show that113

the limitation to the individuals’ time resources statistically114

promotes the participants’ level of cooperation, which aligns115

with the theoretical prediction presented below.116

Theoretical framework of temporal games 117

Temporal game model. In a two-strategy (i.e., only two moves 118

are allowed) game, define i’s strategy as Ωi =
(

Xi

1−Xi

)
, 119

where Xi can only take 1 or 0 in each game. If Xi = 1, i is a 120

cooperator denoted by C. If Xi = 0, i is a defector denoted 121

by D. Take the PD game (41) for example, in the PD game, 122

the payoff table is a 2 × 2 matrix. Given i’s strategy, i’s 123

payoff in the game playing with all his neighbors (denoted by 124

Ni) can be written as Gi = ΩT
i

(
R S
T P

)∑
j∈Ni

Ωj . In the 125

PD model, it gains T (temptation to defect) for defecting a 126

cooperator, R (reward for mutual cooperation) for cooperating 127

with a cooperator, P (punishment for mutual defection) for 128

defecting a defector, and S (sucker’s payoff) for cooperating 129

with a defector. Normally, the four payoff values satisfy the 130

following inequalities: T > R > P > S and 2R > T +S. Here, 131

2R > T +S makes mutual cooperation the best outcome from 132

the perspective of the collective. 133

The temporal game model proposed in this paper is based 134

on the game model (42, 43) taking into account the time of 135

interactions. As the model is time-involved, each interaction 136

is assigned a specific duration. The total game time for each 137

individual in a round is set to be constant and the same for all 138

individuals to be realistic to real-life scenarios. An individual’s 139

interactions with different partners are assumed, independent. 140

The payoff of the game between individuals i and j can be 141

written as si,j = ΩT
i,j

(
R S
T P

)
Ωj,i . In the temporal games, 142

the payoff of each interaction is proportional to the time it 143

spans. In one round of the game, the accumulated payoff of 144

individual i is defined as 145

Λi =
∑
j∈Ni

τi,j

T
× si,j , [1] 146

where Ni is the set of i’s neighbors; τi,j is the duration of 147

the interaction between individuals i and j. As shown in 148

Fig. 1A, let i and j be the individuals colored red and blue. 149

Then Ni = 4 and τi,j = 8. Notably, τi,j should satisfy the 150

constraints of τi,j ∈ [0,T] and
∑

j∈Ni

τi,j 6 T. Here, T is the 151

total time resource of an individual in each round, which is a 152

constant for all individuals in our model. In Fig. 1A, T = 24. 153

If individual i does not want to collaborate with j, then i will 154

not apply for a game with j any longer. Simultaneously, i will 155

reject j’s gaming request. In this case, τi,j will be 0 as the 156

relation between the red and the green in Fig. 1A. 157

Let Pi be the set of partners who interacted with i in the 158

round, Eq. 1 can be written as 159

Λi =
∑
j∈Pi

τi,j

T
× si,j , [2] 160

where τi,j is greater than 0. For the red individual in Fig. 1A, 161

the orange and the blue are his partners in this round. Based 162

on Eq. 2, the payoffs of the 5 individuals are listed in Fig. 1B. 163

In a mean-field view, Eq. 2 can be written as 164

Λki =
∑

kj

τki,kj

T
P (ki, kj) ski,kj , [3] 165

where P (ki, kj) is the probability that a link exists between i 166

and j, dependent on the topology of the collaborative network. 167

2 | Wang, Zhang et al.
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8 hours16 hours

A. Action Stage B. Payoffs

8/24×5+16/24×3 = 3.67

8/24×0 = 0

16/24×3 = 2

C D

0

0

Fig. 1. Illustration of the temporal game. Panel A shows a round of the temporal
game among 5 individuals. The individual colored red has 4 friends, in which the
individuals colored orange and blue are his gaming partners. If the game beween two
individuals lasts for 24 hours, the payoff of a cooperator is 3 and 0, gaining from a
cooperator and a defector, respectively. The payoff of a defector is 5 and 1, gaining
from a cooperator and a defector, respectively.

We show an illustration of such a collaborative network in168

Fig. 2A. To clarify the generating procedure of the network,169

we provide the communication log among the individuals in170

this round in Fig. 2B. In the log, Alice tried collaborating171

with Tom for T, while Tom had agreed to work with Jerry172

and Frank when he received Alice’s request. Thus, Alice173

turned to Frank and Jerry, but it was a bit late to make174

appointments with them as they were partially engaged. As175

a result, Alice took 0.8T to play with Frank and Jerry and176

wasted 0.2T in this round. For a heterogeneous network as177

the Barabási-Albert (BA) networks (44), P (ki, kj) ∼ kj P (kj )
〈k〉 .178

For a homogeneous networks as the Watts and Strogatz (WS)179

networks (45), P (ki, kj) ∼ P (kj).180

Proportion of cooperation in the temporal game. In the tem-181

poral game, each game between partners is coupled with a du-182

ration. Therefore, the level of cooperation should be measured183

by the duration and their moves. We define the proportion184

of cooperation as Pc = TC
TG

, where TG is the total duration of185

the moves and TC is the total duration of cooperation in the186

games.187

Note that current studies on decision time (46, 47) in ex-188

perimental psychology and response time in experimental189

economics (48, 49) focus on the time of making a decision190

rather than the duration of moves. Therefore, the object of191

such studies is different from that of temporal games.192

Mathematical modeling the available time of individuals. As is193

known, for each game between two players, each player has to194

experience one of the four possible cases, namely, cooperating195

with a cooperator (CC), cooperating with a defector (CD),196

defecting a cooperator (DC), and defecting a defector (DD). We197

define a state vector Φ by (ΦCC ,ΦCD,ΦDC ,ΦDD), in which198

each entry corresponds to the probability of experiencing the199

respective outcome. Generally, a memory-one strategy can200

be written as p = (pCC , pCD, pDC , pDD), corresponding to201

the probabilities of cooperating under each of the previous202

outcomes. Since players update their moves with the memory-203

one strategies in each time step, the update can be considered204

a Markov process. One can find a Markov transition matrix205

Mi to realize the update. For two players, i and j, we have 206

Mi=

(
pCC sCC pCC (1 − sCC ) (1 − pCC )sCC (1 − pCC )(1 − sCC )
pCDsDC pCD(1 − sDC ) (1 − pCD)sDC (1 − pCD)(1 − sDC )
pDC sCD pDC (1 − sCD) (1 − pDC )sCD (1 − pDC )(1 − sCD)
pDDsDD pDD(1 − sDD) (1 − pDD)sDD (1 − pDD)(1 − sDD)

)
,

[4] 207

where the vectors p = (pCC , pCD, pDC , pDD) and s = 208

(sCC , sCD, sDC , sDD) denote i and j’s probabilities of cooper- 209

ation in the next round after experiencing CC, CD, DC, and 210

DD cases, respectively. Then the evolution of i’s state vector 211

Φi(t) is given by 212

Φi(r) = Φi(r − 1)Mi. [5] 213

To model the the available time of individuals in the tem- 214

poral games, we first assume that no players at round r − 1 215

reject the requests from an individual i if they are available. 216

The time left for him to make use of in round r can be denoted 217

by Si (r) = T−
∑

j∈Pi
τuij (r−1), where µij (r − 1) denotes the 218

random portion of time in the request from i or j in round 219

r − 1 and takes a random real number between 0 and 1. If 220

i applies for playing with j for Si (r)µij (r), the successful 221

probability of the request is 222

ωi,j (r, µij (r)) =
{

1, Sj (r) ≥ Si (r)µij (r),
0, Sj (r) < Si (r)µij (r), [6] 223

assuming j wish to play. Therefore, the expectation of dif- 224

ference in individual i’s available time from round r to r + 1 225

is 226

%i (r) = −
∑

j∈Ni−Pi(r−1) ωi,j (r, µij (r)) (Si (r) [7] 227

+
∑

l∈Pi(r−1) αil (r − 1)

Φil (r) ·

χi,CC

χi,CD

χi,DC

χi,DD



µij (r) , 228

where χi denotes i’s probabilities of reassigning time after 229

experiencing the four outcomes. αil (r) denotes the time share 230

which i assigns to j at round r. Note that 231∑
l∈Pi

αil (r) + Si (r) = 1. [8] 232

Considering Si (r) ≥ 0 for all r, the iterative formula of Si (r) 233

should be written as 234

Si (r + 1) = Relu (%i (r) + Si (r)) , [9] 235

where Relu (x) =
{

x, x ≥ 0,
0, x < 0. As the evolution procedure 236

of Si (r) in the system can not be modeled in a mean-field way, 237

one can hardly present an analytical solution to it. Therefore, 238

we will present the simulation results and empirical results from 239

human online experiments in the following. In the simulations, 240

we uniformly set the agents to adopt the same strategy to have 241

the results reproducible. Let the number of agents be NA. 242

We will show that the average available time S (r) =
∑

i
Si(r)

NA
243

falls to a low level at the first round. It is stablized after then, 244

indicating that finding new partners is problematic from the 245

beginning of a match. 246

Results 247

To show the impact of time redistribution, we first simulate the 248

evolution of moves when agents play a traditional Prisoner’s 249

dilemma (PD) game with their neighbors in the BA and WS 250

Wang, Zhang et al. PNAS | March 11, 2023 | vol. XXX | no. XX | 3
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No. From To Communication Records
Jerry Bob Request for interaction with 0.2T.
Jerry Tom Request for interaction with 0.4T.
Jerry Alice Request for interaction with 0.4T.
Bob Jerry OK.

Frank Tom Request for interaction with 0.6T.
Tom Jerry OK.
Tom Frank OK.
Alice Tom Request for interaction with T.
Frank Alice Request for interaction with 0.4T.
Tom Alice Sorry.

⑪ Alice Frank OK.
⑫ Alice Jerry OK.

Communication Log

Fig. 2. Illustration of the temporal games in a two-player collaborative system. (A) One round of the temporal game on a social network. The blue circle is Jerry’s neighborhood.
Alice, Bob, and Tom are Jerry’s partners in this round. The color of a time slot represents a partner; for instance, yellow represents Frank. C or D in the time slot denotes
the move from the individual at the tail of a directed dashed line to the indicated specific partner. (B) The generating procedure of the circumstance presented in (A). In the
communication log, the records are sorted by their sequence numbers in ascending order. Only if both players agree to collaborate (the response to a request is OK) will their
colors appear in each other’s collaboration schedule, i.e., a time slot in (A).

Table 1. The basic information of matches.

Game Number Game Type Type of Network Number of Participants Number of Rounds Corresponding Panel in Fig. 4
G1224 D&C BA 39 13 Fig. 4(a)
G1230 D&C BA 17 16 Fig. 4(a)
G646 Temporal Games BA 50 11 Fig. 4(b)
G903 Temporal Games BA 44 28 Fig. 4(b)
G1228 D&C WS 34 13 Fig. 4(c)
G1234 D&C WS 21 15 Fig. 4(c)
G936 Temporal Games WS 22 24 Fig. 4(d)
G933 Temporal Games WS 22 28 Fig. 4(d)

networks. In a network, a player starts a game with a gaming251

request to a neighbor. In our simulations, all the agents252

in the network are selected one by one, following a random253

sequence. For a selected agent, it evenly allocates the time left254

to its requests to the uncoordinated neighbors. If the requested255

neighbor has enough time to accept the gaming request, he will256

accept it. After one round of the game, agents will uniformly257

update their moves with the Zero-Determinant Extortionate258

strategy proposed in reference (57). The strategy will wipe259

the cooperators out in a few rounds. If an agent defects in a260

round, the pair will be taken apart with a certain probability.261

The separation means the time assigned to the pair will be262

redistributed next round. More details on the simulations will263

be provided in Section Simulation on the social networks.264

In Fig. 3(a) and 3(b), the results show the level of cooper-265

ation decays with rounds for agents playing the ‘divide-and-266

conquer’ (D&C) games (4, 42, 43) in both networks. After267

being affected by the temporal mechanisms, the rates of decay268

slow down in Fig. 3(c) and 3(d). We show the difference in269

the level of cooperation between the temporal games and the270

D&C games (4, 42, 43) in Fig. 3(e) and 3(f), which will be271

amplified when human subjects play. The amplification may272

originate from S (r) shown in Fig. 3(g) and 3(h), which will273

be much lower when humans play the temporal games.274

To test the validity of our theoretical results, we invite 183275

volunteers to attend 8 online experiments. For conciseness, we276

show the basic information of each match in Table 1. After277

comparing Fig. 4(a) with Fig. 4(b) and Fig. 4(c) with Fig. 4(d),278

one can see that the decay of Pc (r) in the temporal games is279

slower than that in the D&C games. The result confirms our280

theoretical prediction, indicating the limitation on gaming time 281

promotes the level of cooperation in gaming social networks. 282

To explain the behavior, we measure the average available 283

time S (r) in the four time-involved matches. The evolution 284

of S (r) for the two BA networks are shown in Fig. 4(e) and 285

Fig. 4(f), respectively. The corresponding results for the two 286

WS networks are shown in Fig. 4(g) and Fig. 4(h), respectively. 287

One can see that S (r) fluctuates around a small positive 288

value in the four panels, revealing the difficulty of finding 289

new partners when humans play the temporal games is more 290

significant than our theoretical prediction. The difference in 291

Pc (r) between the theoretical prediction and human behavior 292

suggests that the rising of the difficulty of finding new partners 293

may lead to the promotion of Pc (r), which to some extent 294

explains why the limited time promotes the level of cooperation 295

in a social network. 296

The other behavior which should be noted is that the level 297

of cooperation generally decays with rounds in Fig. 4. The 298

behavior is caused by the number of rounds for each match 299

being limited, although it is random. This limitation mainly 300

comes from the time of the subjects, since it is complicated to 301

ask about 100 students to play online for more than an hour 302

simultaneously, even though we pay them acceptable participa- 303

tion fees and provide attractive rewards for the winners of each 304

match. We show some of the winners’ strategies in Section 305

Top Voted Strategies of Supplementary Information 306

(SI). One can see that the level of cooperation decays when 307

the participants guess that the match is ending. 308

4 | Wang, Zhang et al.
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Fig. 3. Evolution of the average proportion of cooperation 〈Pc (r)〉 in the ‘divide-
and-conquer’ (D&C) and temporal gaming networks. (a) and (c) show 〈Pc (r)〉 of
the D&C games and temporal games in the BA networks, respectively. (b) and (d)
show 〈Pc (r)〉 of the two classes of games in the WS networks, respectively. (e)
and (f) show the difference of 〈Pc (r)〉 between the D&C games and the temporal
games in the BA and WS networks, respectively. Each plot denotes the average
of 10 simulation runs. As the system evolves dramatically at the beginning of the
experiments, we show the results in semi-log coordinates.

Discussion309

As a theoretical framework closer to realistic scenarios, the310

temporal game has demonstrated its capacity to illuminate311

complex behaviors in our social experiment. The human be-312

haviors revealed from the human temporal games were rarely313

reported previously in the literature. When the available time314

resources of individuals in the gaming network are scarce, the315

individuals are more likely to maintain the current relation-316

ships through cooperation. The underlying mechanism is that317

interactions are not obligated but spontaneous. If an individ-318

ual’s time resource cannot afford the requested duration of the319

interaction, he will have no choice but to abandon it, which320

makes it much harder to find new partners. The accordance321

of empirical and simulation results confirms the significance322

of the mechanism. Our finding reveals a fundamental reason323

for lasting altruistic behaviors in real human interactions, pro-324

viding a novel perspective for understanding the prevailing325

of human cooperative behaviors in temporal collaboration326

systems.327

Note that the limitation on time is an objective fact in328

human collaboration systems, which is essentially different329

from the incentives, such as global reputation (50, 51) and330

onymity (52), associated with human psychology. In a sense,331

the behavior observed in our experiments is more deterministic.332

Introducing some other mechanisms like reward (53) and costly333

punishment (54, 55) to the temporal systems will be a natural334

extension in this direction. Apart from the mechanisms, the335

impact from different types of games, for instance, the snow-336

drift game (56) and the public goods game (19), is also of337

particular interest.338

Our work considers the temporal game framework and339

presents some surprising results. There are several interesting340

future directions, both in terms of theoretical and experimen-341

tal results. However, the basic theoretical model and the342

key experimental results we present in this work for tempo-343

ral games are the first steps to modeling realistic networks344

with time-dependent interactions. Such realistic modeling will345

allow better analysis, prediction, and design principles for346

the emergence of cooperation in network models, profoundly347
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Fig. 4. Evolution of the average proportion of cooperation Pc (r) and the average
proportion of cooperation S (r) in the temporal games played by human subjects. (a)
and (c) show the results of the D&C games in the BA networks and WS networks,
respectively. (b) and (d) show the results of the temporal games in the BA networks
and WS networks, respectively. Horizontal coordinates denote the number of rounds.
(e) and (f) show the results of two temporal games in the BA networks. (g) and (h)
show the results of two temporal games in the WS networks.

impacting disciplines from preserving natural resources to 348

designing institutional policies. 349

Materials and Methods 350

Experimental design. In order to build an experimental environment 351

as close as possible to natural temporal two-player collaborative 352

systems, two realistic factors are considered in our empirical study. 353

First, the interactive time is determined by negotiation. The setting 354

restores the temporal property of a game in reality. A dynamic 355

reconnection is implemented in the network by rejecting a friend’s 356

request and then proposing a game with another friend (29, 31). 357

Second, a ‘divide-and-conquer’ (D&C) framework, also referred 358

to as targeted decision, is adopted, in which the individuals who 359

propose a game or accept a gaming request have to decide whether to 360

cooperate (C) or to defect (D) in each round of the game (4, 42, 43). 361

Most existing research on gaming networks is performed under a 362

framework where individuals choose the same move to interact with 363

all their neighbors (29–31). On the contrary, in real-world scenarios, 364

people do not normally defect their long-term partners after being 365

defected by other partners. In a realistic social network, they would 366

choose a specific move to play with a partner, referred to as the 367

D&C game in the literature (42, 43). When the diffuse decision 368

scheme is replaced by the D&C or targeted decision scheme, the 369

impact of dynamic reconnection on promoting cooperation will 370

become negligible (4). 371

The coupling between temporal interaction and rational decision- 372

making can be seen everywhere in real life. Still, the existing the- 373

oretical frameworks seem insufficient to explain the widespread 374

cooperation in such temporal games. Under the framework of tem- 375

poral games, we designed a series of online game experiments. With 376

the experimental data, we present a surprising finding: limitation 377

of time promotes cooperation in temporal games. This finding, 378

on the one hand, urges us to reconsider how much the dynamic 379
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nature of networks can impact human cooperation. On the other380

hand, it implies the potential of the temporal game framework to381

explain various collective behaviors in real two-player collabora-382

tive systems. Our results have a profound impact on the study383

of pro-social behavior. By accounting for the time-dependent as-384

pect to model a realistic network, we present an interesting finding385

which can improve our understanding of widespread cooperation in386

time-dependent collaborations.387

Experimental setup and game rules. A series of online human subject388

experiments were designed to build a two-player collaborative system389

of rational individuals. A total of 183 human subjects participated390

in 8 matches in the experiment. The majority of subjects are391

students from Tongji University and Southeast University in China.392

To implement the designed scenario, a novel online gaming platform393

was developed, called the War of Strategies (http://strategywar.net,394

see (Section Experimental Platform and Interface of SI for395

the details of the platform).396

In the online experiments, participants played a traditional Pris-397

oner’s dilemma (PD) game, where C and D were the only available398

actions. Each participant interacted with the individuals who had399

agreements with him in one round, after which the agreements need400

to be redrafted.401

Each match on the platform comprises two stages. In the first402

stage, the system generates a network with a social network model.403

The subjects are then allocated to the nodes of the network. There-404

fore, the connections among the subjects are randomly predeter-405

mined. The second stage is an n-round iterated PD game, where406

10 ≤ n ≤ 30 is unknown to individuals to avoid the ending-game407

effects.408

In each round of the game, individuals can make requests for409

interactions with their friends. In a request, the duration of the410

interaction is suggested by the sender and shown to the target.411

The request can be accepted, denied, ignored, or canceled. Once412

an individual accepts it, the individual has to choose a move as a413

response. The payoff of the game is proportional to the duration414

suggested in the request, which is a part or all of the sender’s time415

resource. Once the request is sent out, this part of the resource416

will be occupied before receiving a response, which cannot be used417

again in any other interaction. If the request is accepted, the time418

resource will be consumed. If the request is denied, ignored, or419

canceled, the time resource will be returned to the sender. The420

total time resource assigned to each individual is 1, 440 units in421

each round, simulating one day in real life. We adopt 1, 440 to help422

the participants to understand its meaning, the value of which is423

irrelevant to our results. For all the individuals, each round lasts424

for 60 seconds. The initial aggregated payoff for each individual is425

0. The payoff matrix is the same as that in Fig. 1.426

During the match, the individual IDs are randomly generated.427

The individuals can only see their own game records, where each428

record includes the moves of both sides and the time durations.429

The topological structures beyond their immediate neighbors are430

invisible to them. Besides, individuals are shown their aggregated431

payoff, time resources, number of rounds played, and their decision432

time remaining.433

Simulation on the social networks. Here, we will present the process434

of the simulation. Step 1, Generate a structured population such435

as the Barabási and Albert’s scale-free network (40) with degree436

m0 = m = 3 or Watts and Strogatz’s small-world network with437

Prewire = 0.1 and K = 6. Randomly assign the agents to be438

cooperators with a probability of 0.5. The size of the population439

is set to 1,024. Step 2, Shuffle the agent list and iteratively ask440

an agent to broadcast gaming requests to its neighbors. In each441

request, the agent evenly allocates its time left to its uncoordinated442

neighbors, i.e., µij (r) = 1
|Ni−Pi(r−1)| , where j ∈ Ni − Pi (r − 1).443

If a neighbor has enough time to accept the request, he will accept444

it. Step 3, Each pair of the matched agents game for one round and445

update their moves, following the Zero-Determinant Extortionate446

strategy proposed in reference (57). Step 4, If an agent defects in447

the round, the pair will be taken apart with a probability of 0.5,448

that is, χ = [0, 0.5, 0.5, 0.5]. Step 5, Repeat Steps 2, 3, and 4 until449

the preset number of rounds.450
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