169 lines
15 KiB
TeX
169 lines
15 KiB
TeX
\relax
|
|
\providecommand\hyper@newdestlabel[2]{}
|
|
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
|
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
|
\global\let\oldcontentsline\contentsline
|
|
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
|
\global\let\oldnewlabel\newlabel
|
|
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
|
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
|
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
|
\let\contentsline\oldcontentsline
|
|
\let\newlabel\oldnewlabel
|
|
\fi}
|
|
\fi}
|
|
\global\let\hyper@last\relax
|
|
\gdef\HyperFirstAtBeginDocument#1{#1}
|
|
\providecommand\HyField@AuxAddToFields[1]{}
|
|
\providecommand\HyField@AuxAddToCoFields[2]{}
|
|
\Newlabel{1}{1}
|
|
\Newlabel{2}{2}
|
|
\Newlabel{3}{3}
|
|
\Newlabel{4}{4}
|
|
\Newlabel{5}{5}
|
|
\Newlabel{6}{6}
|
|
\Newlabel{7}{7}
|
|
\Newlabel{8}{8}
|
|
\Newlabel{9}{9}
|
|
\Newlabel{10}{10}
|
|
\Newlabel{11}{11}
|
|
\citation{albert_rmp02}
|
|
\citation{shen_rsos18}
|
|
\citation{Pagan2019game}
|
|
\citation{melamed_pnas18}
|
|
\citation{boyd2005solving,gachter2009reciprocity,rand_tcs13,perc_pr17}
|
|
\citation{nowak_11}
|
|
\citation{hrdy_11}
|
|
\citation{bowles_11}
|
|
\citation{maynard_n73,hofbauer_98,cressman_03}
|
|
\citation{szabo_pr07}
|
|
\citation{santos_prl05,ohtsuki_n06,santos_pnas06,santos_n08,tanimoto_pre07,fu_pre09,lee_s_prl11,rand_pnas14,fu2017leveraging,allen2017evolutionary,fotouhi_rsif19}
|
|
\citation{nowak_n92b}
|
|
\citation{perc_bs10}
|
|
\citation{rand_pnas11,fehl_el11,wang_j_pnas12,szolnoki_epl14b,wang_z_njp14,shen_rsos18}
|
|
\citation{melamed_pnas18}
|
|
\citation{rand_pnas11}
|
|
\citation{melamed_pnas18}
|
|
\citation{EHB34164}
|
|
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}\protected@file@percent }
|
|
\newlabel{sec1}{{1}{2}{Introduction}{section.1}{}}
|
|
\citation{zhang2018gaming,miritello2013time}
|
|
\citation{GTN,holme_sr12}
|
|
\citation{zhang_yc_sr15,wang_js_sr17,melamed_pnas18}
|
|
\citation{fehl_el11,rand_pnas11,gracia-lazaro_pnas12,rand_pnas14}
|
|
\citation{BA}
|
|
\citation{maynard_82}
|
|
\citation{wang_js_sr17,zhang_yc_sr15}
|
|
\@writefile{toc}{\contentsline {section}{\numberline {2}Theoretical framework of temporal games}{4}{section.2}\protected@file@percent }
|
|
\newlabel{FTG}{{2}{4}{Theoretical framework of temporal games}{section.2}{}}
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Temporal game model}{4}{subsection.2.1}\protected@file@percent }
|
|
\newlabel{Tgm}{{2.1}{4}{Temporal game model}{subsection.2.1}{}}
|
|
\newlabel{LambdaiN}{{1}{4}{Temporal game model}{equation.2.1}{}}
|
|
\citation{barabasi_s99}
|
|
\citation{Watts98Nature}
|
|
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Illustration of the temporal game. Panel A shows one round of the temporal game among five individuals. The individual colored red has four friends, in which the individuals colored orange and blue are his gaming partners. If the game between two individuals lasts for 24 hours, the payoff of a cooperator is 3 and 0, gaining from a cooperator and a defector, respectively. The payoff of a defector is 5 and 1, gaining from a cooperator and a defector, respectively.}}{5}{figure.1}\protected@file@percent }
|
|
\newlabel{fig:ITG}{{1}{5}{Illustration of the temporal game. Panel A shows one round of the temporal game among five individuals. The individual colored red has four friends, in which the individuals colored orange and blue are his gaming partners. If the game between two individuals lasts for 24 hours, the payoff of a cooperator is 3 and 0, gaining from a cooperator and a defector, respectively. The payoff of a defector is 5 and 1, gaining from a cooperator and a defector, respectively}{figure.1}{}}
|
|
\newlabel{LambdaiP}{{2}{5}{Temporal game model}{equation.2.2}{}}
|
|
\newlabel{LambdaiPkikj}{{3}{5}{Temporal game model}{equation.2.3}{}}
|
|
\citation{evans2019cooperation,evans2015fast}
|
|
\citation{yamagishi2017response,spiliopoulos2018bcd}
|
|
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Illustration of temporal games in a two-player collaborative system. (A) One round of the temporal game on a social network. The blue circle is Jerry's neighborhood. Alice, Bob, and Tom are Jerry's partners in this round. The color of a time slot represents a partner; for instance, yellow represents Frank. $C$ or $D$ in the time slot denotes the move from the individual at the tail of a directed dashed line to the indicated specific partner. (B) The generating procedure of the circumstance is presented in (A). In the communication log, the records are sorted by their sequence numbers in ascending order. Only if both players agree to collaborate (the response to a request is OK) will their colors appear in each other's collaboration schedule, i.e., a time slot in (A).}}{6}{figure.2}\protected@file@percent }
|
|
\newlabel{fig:tdnc}{{2}{6}{Illustration of temporal games in a two-player collaborative system. (A) One round of the temporal game on a social network. The blue circle is Jerry's neighborhood. Alice, Bob, and Tom are Jerry's partners in this round. The color of a time slot represents a partner; for instance, yellow represents Frank. $C$ or $D$ in the time slot denotes the move from the individual at the tail of a directed dashed line to the indicated specific partner. (B) The generating procedure of the circumstance is presented in (A). In the communication log, the records are sorted by their sequence numbers in ascending order. Only if both players agree to collaborate (the response to a request is OK) will their colors appear in each other's collaboration schedule, i.e., a time slot in (A)}{figure.2}{}}
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Proportion of cooperation in the temporal game}{6}{subsection.2.2}\protected@file@percent }
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Mathematical modeling the available time of individuals}{6}{subsection.2.3}\protected@file@percent }
|
|
\newlabel{MMATI}{{2.3}{6}{Mathematical modeling the available time of individuals}{subsection.2.3}{}}
|
|
\citation{stewart_pnas12}
|
|
\newlabel{eqn:f}{{6}{7}{Mathematical modeling the available time of individuals}{equation.2.6}{}}
|
|
\@writefile{toc}{\contentsline {section}{\numberline {3}Results}{7}{section.3}\protected@file@percent }
|
|
\newlabel{Er}{{3}{7}{Results}{section.3}{}}
|
|
\citation{zhang_yc_sr15,wang_js_sr17,melamed_pnas18}
|
|
\citation{zhang_yc_sr15,wang_js_sr17,melamed_pnas18}
|
|
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Evolution of the average proportion of cooperation $\langle P_c\left (r\right )\rangle $ in the `divide-and-conquer' (D\&C) and temporal gaming networks. (a) and (c) show $\langle P_c\left (r\right )\rangle $ of the D\&C games and temporal games in the BA networks, respectively. (b) and (d) show $\langle P_c\left (r\right )\rangle $ of the two types of games in the WS networks, respectively. (e) and (f) show the differences of $\langle P_c\left (r\right )\rangle $ between the D\&C games and the temporal games in the BA and WS networks, respectively. Each plot denotes the average of $10$ simulation runs. As the system evolves dramatically at the beginning of the experiments, the results are shown in semi-log coordinates.}}{8}{figure.3}\protected@file@percent }
|
|
\newlabel{fig:APC}{{3}{8}{Evolution of the average proportion of cooperation $\langle P_c\left (r\right )\rangle $ in the `divide-and-conquer' (D\&C) and temporal gaming networks. (a) and (c) show $\langle P_c\left (r\right )\rangle $ of the D\&C games and temporal games in the BA networks, respectively. (b) and (d) show $\langle P_c\left (r\right )\rangle $ of the two types of games in the WS networks, respectively. (e) and (f) show the differences of $\langle P_c\left (r\right )\rangle $ between the D\&C games and the temporal games in the BA and WS networks, respectively. Each plot denotes the average of $10$ simulation runs. As the system evolves dramatically at the beginning of the experiments, the results are shown in semi-log coordinates}{figure.3}{}}
|
|
\citation{fu_pre08b,gallo_pnas15}
|
|
\citation{wang2017onymity}
|
|
\citation{sefton_ei07}
|
|
\citation{fehr_n02,PCB14e1006347}
|
|
\citation{hauert_n04}
|
|
\citation{santos_n08}
|
|
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces The basic information of matches.}}{9}{table.1}\protected@file@percent }
|
|
\newlabel{PRGNF}{{1}{9}{The basic information of matches}{table.1}{}}
|
|
\@writefile{toc}{\contentsline {section}{\numberline {4}Discussion}{9}{section.4}\protected@file@percent }
|
|
\newlabel{Dis}{{4}{9}{Discussion}{section.4}{}}
|
|
\citation{rand_pnas11,wang_j_pnas12}
|
|
\citation{zhang_yc_sr15,wang_js_sr17,melamed_pnas18}
|
|
\citation{rand_pnas11,fehl_el11,wang_j_pnas12}
|
|
\citation{zhang_yc_sr15,wang_js_sr17}
|
|
\citation{melamed_pnas18}
|
|
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Evolution of the proportion of cooperation $P_c\left (r\right )$ and the average available time $S\left (r\right )$ in the temporal games played by human subjects. (a) and (c) show the results of the D\&C games on the BA networks and WS networks, respectively. (b) and (d) show the results of the temporal games on the BA networks and WS networks, respectively. Horizontal coordinates denote the number of rounds. (e) and (f) show the results of two temporal games on the BA networks. (g) and (h) show the results of two temporal games on the WS networks.}}{10}{figure.4}\protected@file@percent }
|
|
\newlabel{fig:HMBAWS}{{4}{10}{Evolution of the proportion of cooperation $P_c\left (r\right )$ and the average available time $S\left (r\right )$ in the temporal games played by human subjects. (a) and (c) show the results of the D\&C games on the BA networks and WS networks, respectively. (b) and (d) show the results of the temporal games on the BA networks and WS networks, respectively. Horizontal coordinates denote the number of rounds. (e) and (f) show the results of two temporal games on the BA networks. (g) and (h) show the results of two temporal games on the WS networks}{figure.4}{}}
|
|
\@writefile{toc}{\contentsline {section}{\numberline {5}Materials and Methods}{11}{section.5}\protected@file@percent }
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Experimental design}{11}{subsection.5.1}\protected@file@percent }
|
|
\newlabel{ED}{{5.1}{11}{Experimental design}{subsection.5.1}{}}
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Experimental setup and game rules}{11}{subsection.5.2}\protected@file@percent }
|
|
\newlabel{ESGR}{{5.2}{11}{Experimental setup and game rules}{subsection.5.2}{}}
|
|
\citation{BA}
|
|
\citation{stewart_pnas12}
|
|
\bibstyle{sn-basic}
|
|
\bibdata{egt}
|
|
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Simulation on the social networks}{12}{subsection.5.3}\protected@file@percent }
|
|
\newlabel{SSN}{{5.3}{12}{Simulation on the social networks}{subsection.5.3}{}}
|
|
\@writefile{toc}{\contentsline {subparagraph}{Acknowledgments}{12}{section*.2}\protected@file@percent }
|
|
\bibcite{albert_rmp02}{{1}{2002}{{Albert and Barab{\'a}si}}{{}}}
|
|
\bibcite{allen2017evolutionary}{{2}{2017}{{Allen et~al}}{{Allen, Lippner, Chen, Fotouhi, Nowak, and Yau}}}
|
|
\bibcite{BA}{{3}{1999}{{Barab\'{a}si and Albert}}{{}}}
|
|
\bibcite{barabasi_s99}{{4}{1999}{{Barab{\'a}si and Albert}}{{}}}
|
|
\bibcite{EHB34164}{{5}{2013}{{Barclay}}{{}}}
|
|
\bibcite{bowles_11}{{6}{2011}{{Bowles and Gintis}}{{}}}
|
|
\bibcite{boyd2005solving}{{7}{2005}{{Boyd and Richerson}}{{}}}
|
|
\bibcite{PCB14e1006347}{{8}{2018}{{Chen and Szolnok}}{{}}}
|
|
\bibcite{cressman_03}{{9}{2003}{{Cressman}}{{}}}
|
|
\bibcite{evans2019cooperation}{{10}{2019}{{Evans and Rand}}{{}}}
|
|
\bibcite{evans2015fast}{{11}{2015}{{Evans et~al}}{{Evans, Dillon, and Rand}}}
|
|
\bibcite{fehl_el11}{{12}{2011}{{Fehl et~al}}{{Fehl, van~der Post, and Semmann}}}
|
|
\bibcite{fehr_n02}{{13}{2002}{{Fehr and G{\"a}chter}}{{}}}
|
|
\bibcite{fotouhi_rsif19}{{14}{2019}{{Fotouhi et~al}}{{Fotouhi, Momeni, Allen, and Nowak}}}
|
|
\bibcite{fu2017leveraging}{{15}{2017}{{Fu and Chen}}{{}}}
|
|
\bibcite{fu_pre08b}{{16}{2008}{{Fu et~al}}{{Fu, Hauert, Nowak, and Wang}}}
|
|
\bibcite{fu_pre09}{{17}{2009}{{Fu et~al}}{{Fu, Wu, and Wang}}}
|
|
\bibcite{gachter2009reciprocity}{{18}{2009}{{G{\"a}chter and Herrmann}}{{}}}
|
|
\bibcite{gallo_pnas15}{{19}{2015}{{Gallo and Yan}}{{}}}
|
|
\bibcite{gracia-lazaro_pnas12}{{20}{2012}{{Gracia-L{\'a}zaro et~al}}{{Gracia-L{\'a}zaro, Ferrer, Ruiz, Taranc{\'o}n, Cuesta, S{\'a}nchez, and Moreno}}}
|
|
\bibcite{hauert_n04}{{21}{2004}{{Hauert and Doebeli}}{{}}}
|
|
\bibcite{hofbauer_98}{{22}{1998}{{Hofbauer and Sigmund}}{{}}}
|
|
\bibcite{holme_sr12}{{23}{2012}{{Holme and Saram{\"a}ki}}{{}}}
|
|
\bibcite{hrdy_11}{{24}{2011}{{Hrdy}}{{}}}
|
|
\bibcite{lee_s_prl11}{{25}{2011}{{Lee et~al}}{{Lee, Holme, and Wu}}}
|
|
\bibcite{GTN}{{26}{2016}{{Masuda and Lambiotte}}{{}}}
|
|
\bibcite{maynard_82}{{27}{1982}{{Maynard}}{{}}}
|
|
\bibcite{maynard_n73}{{28}{1973}{{Maynard~Smith and Price}}{{}}}
|
|
\bibcite{melamed_pnas18}{{29}{2018}{{Melamed et~al}}{{Melamed, Harrell, and Simpson}}}
|
|
\bibcite{miritello2013time}{{30}{2013}{{Miritello et~al}}{{Miritello, Lara, and Moro}}}
|
|
\bibcite{nowak_11}{{31}{2011}{{Nowak and Highfield}}{{}}}
|
|
\bibcite{nowak_n92b}{{32}{1992}{{Nowak and May}}{{}}}
|
|
\bibcite{ohtsuki_n06}{{33}{2006}{{Ohtsuki et~al}}{{Ohtsuki, Hauert, Lieberman, and Nowak}}}
|
|
\bibcite{Pagan2019game}{{34}{2019}{{Pagan and D\"{o}rfler}}{{}}}
|
|
\bibcite{perc_bs10}{{35}{2010}{{Perc and Szolnoki}}{{}}}
|
|
\bibcite{perc_pr17}{{36}{2017}{{Perc et~al}}{{Perc, Jordan, Rand, Wang, Boccaletti, and Szolnoki}}}
|
|
\bibcite{rand_tcs13}{{37}{2013}{{Rand and Nowak}}{{}}}
|
|
\bibcite{rand_pnas11}{{38}{2011}{{Rand et~al}}{{Rand, Arbesman, and Christakis}}}
|
|
\bibcite{rand_pnas14}{{39}{2014}{{Rand et~al}}{{Rand, Nowak, Fowler, and Christakis}}}
|
|
\bibcite{santos_prl05}{{40}{2005}{{Santos and Pacheco}}{{}}}
|
|
\bibcite{santos_pnas06}{{41}{2006}{{Santos et~al}}{{Santos, Pacheco, and Lenaerts}}}
|
|
\bibcite{santos_n08}{{42}{2008}{{Santos et~al}}{{Santos, Santos, and Pacheco}}}
|
|
\bibcite{sefton_ei07}{{43}{2007}{{Sefton et~al}}{{Sefton, Schupp, and Walker}}}
|
|
\bibcite{shen_rsos18}{{44}{2018}{{Shen et~al}}{{Shen, Chu, Shi, Perc, and Wang}}}
|
|
\bibcite{spiliopoulos2018bcd}{{45}{2018}{{Spiliopoulos and Ortmann}}{{}}}
|
|
\bibcite{stewart_pnas12}{{46}{2012}{{Stewart and Plotkin}}{{}}}
|
|
\bibcite{szabo_pr07}{{47}{2007}{{Szab{\'o} and F{\'a}th}}{{}}}
|
|
\bibcite{szolnoki_epl14b}{{48}{2014}{{Szolnoki and Perc}}{{}}}
|
|
\bibcite{tanimoto_pre07}{{49}{2007}{{Tanimoto}}{{}}}
|
|
\bibcite{wang_j_pnas12}{{50}{2012}{{Wang et~al}}{{Wang, Suri, and Watts}}}
|
|
\bibcite{wang_js_sr17}{{51}{2017{}}{{Wang et~al}}{{Wang, Zhang, Guan, and Zhou}}}
|
|
\bibcite{wang_z_njp14}{{52}{2014}{{Wang et~al}}{{Wang, Szolnoki, and Perc}}}
|
|
\bibcite{wang2017onymity}{{53}{2017{}}{{Wang et~al}}{{Wang, Jusup, Wang, Shi, Iwasa, Moreno, and Kurths}}}
|
|
\bibcite{Watts98Nature}{{54}{1998}{{Watts and Strogatz}}{{}}}
|
|
\bibcite{yamagishi2017response}{{55}{2017}{{Yamagishi et~al}}{{Yamagishi, Matsumoto, Kiyonari, Takagishi, Li, Kanai, and Sakagami}}}
|
|
\bibcite{zhang_yc_sr15}{{56}{2015}{{Zhang et~al}}{{Zhang, Chen, Guan, Zhang, and Zhou}}}
|
|
\bibcite{zhang2018gaming}{{57}{2018}{{Zhang et~al}}{{Zhang, Wen, Chen, Wang, Xiong, Guan, and Zhou}}}
|