emmmm
This commit is contained in:
parent
c4407def2d
commit
99fedde465
3
.gitignore
vendored
3
.gitignore
vendored
@ -3,4 +3,5 @@ graph
|
||||
wos-data-new
|
||||
wos-data-casual
|
||||
*.svg
|
||||
__pycache__
|
||||
__pycache__
|
||||
.vscode/
|
||||
2
.vscode/settings.json
vendored
2
.vscode/settings.json
vendored
@ -1,3 +1,3 @@
|
||||
{
|
||||
"python.pythonPath": "/Users/wjsjwr/.pyenv/versions/anaconda3-5.0.1/bin/python"
|
||||
"python.pythonPath": "C:\\Users\\wjs\\Anaconda3\\python.exe"
|
||||
}
|
||||
@ -2,14 +2,15 @@ import json
|
||||
from matplotlib import pyplot as plt
|
||||
from island.match import Match
|
||||
from island.matches import Matches
|
||||
import numpy as np
|
||||
|
||||
matches = Matches('wos-data-new')
|
||||
max_round = 17
|
||||
max_round = 15
|
||||
|
||||
coopr = []
|
||||
yerr_min = []
|
||||
yerr_max = []
|
||||
x = []
|
||||
x = np.arange(1, max_round+1)
|
||||
bx = []
|
||||
|
||||
survivals = {}
|
||||
@ -36,10 +37,11 @@ for i in range(max_round):
|
||||
yerr_min.append(coopr[-1] - min(co))
|
||||
yerr_max.append(max(co) - coopr[-1])
|
||||
print("%f, %f, %f"%(yerr_min[-1], yerr_max[-1], coopr[-1]))
|
||||
x.append(i+1)
|
||||
|
||||
|
||||
plt.figure()
|
||||
# plt.errorbar(x, coopr, yerr=[yerr_min, yerr_max], fmt='o', capsize=4)
|
||||
plt.boxplot(bx, showmeans=True, meanline=True)
|
||||
# plt.show()
|
||||
plt.savefig('graph/co_per_round.png')
|
||||
# plt.boxplot(bx, showmeans=True, meanline=True)
|
||||
plt.plot(x, coopr)
|
||||
plt.show()
|
||||
# plt.savefig('graph/co_per_round.png')
|
||||
@ -5,7 +5,7 @@ from island.matches import Matches
|
||||
import numpy as np
|
||||
|
||||
matches = Matches('wos-data-new')
|
||||
max_round = 15
|
||||
max_round = 14
|
||||
|
||||
coopr = []
|
||||
yerr_min = []
|
||||
@ -54,11 +54,11 @@ ax = fig.gca()
|
||||
ax.stackplot(x+1, y, labels=labels, colors=colors)
|
||||
ax.set_xticks(x+1)
|
||||
ax.set_xticklabels(x+1)
|
||||
ax.set_xlim(1,15)
|
||||
ax.set_xlim(1,max_round)
|
||||
ax.set_ylim(0, 1)
|
||||
ax.set_xlabel('Round')
|
||||
ax.set_ylabel('Fraction of k')
|
||||
ax.legend()
|
||||
plt.tight_layout()
|
||||
# plt.show()
|
||||
plt.savefig('graph/interaction_per_round.eps')
|
||||
plt.show()
|
||||
# plt.savefig('graph/interaction_per_round.eps')
|
||||
113
k_and_new_partner.py
Normal file
113
k_and_new_partner.py
Normal file
@ -0,0 +1,113 @@
|
||||
import json
|
||||
from matplotlib import pyplot as plt
|
||||
from island.match import Match
|
||||
from island.matches import Matches
|
||||
import numpy as np
|
||||
from scipy.stats import pearsonr
|
||||
|
||||
|
||||
matches = Matches('wos-data-new')
|
||||
|
||||
k = np.arange(2, 11)
|
||||
succ = np.zeros(9)
|
||||
total = np.zeros(9)
|
||||
|
||||
survivals = {}
|
||||
with open('survivals.json', 'r') as f:
|
||||
survivals = json.load(f)
|
||||
|
||||
neighbors = {}
|
||||
for i in range(len(matches.data)):
|
||||
m = matches.data[i]
|
||||
n = {}
|
||||
for r in m.query('neighbor', 'create').raw_data:
|
||||
if r['a'] in n:
|
||||
n[r['a']].append(r['b'])
|
||||
else:
|
||||
n[r['a']] = [r['b']]
|
||||
|
||||
if r['b'] in n:
|
||||
n[r['b']].append(r['a'])
|
||||
else:
|
||||
n[r['b']] = [r['a']]
|
||||
neighbors[matches.names[i]] = n
|
||||
|
||||
for m_i in range(len(matches.data)):
|
||||
m = matches.data[m_i]
|
||||
info = m.query('game', 'created').select('info').first()['info']
|
||||
conf = json.loads(info['config'])
|
||||
game_end_at = int(info['game_end_at'])
|
||||
|
||||
for p in m.query('player', 'join').raw_data:
|
||||
pid = p['pid']
|
||||
for i in range(2, game_end_at):
|
||||
neighborhood = []
|
||||
if pid not in neighbors[matches.names[m_i]]:
|
||||
break
|
||||
for j in neighbors[matches.names[m_i]][pid]:
|
||||
if j in survivals[matches.names[m_i]][str(i-1)]:
|
||||
neighborhood.append(j)
|
||||
if len(neighborhood) < 2:
|
||||
break
|
||||
previous_round_partner = []
|
||||
for r in m.query('action', 'done').where(lambda x: x['rno']==i-1 and (x['a']==pid or x['b']==pid)).raw_data:
|
||||
if r['a'] == pid:
|
||||
previous_round_partner.append(r['b'])
|
||||
else:
|
||||
previous_round_partner.append(r['a'])
|
||||
new_partner_request = 0
|
||||
for r in m.query('action', 'request').where(lambda x: x['rno']==i and (x['from']==pid or x['to']==pid)).raw_data:
|
||||
if r['from'] == pid:
|
||||
if r['to'] not in previous_round_partner:
|
||||
new_partner_request += 1
|
||||
else:
|
||||
if r['from'] not in previous_round_partner:
|
||||
new_partner_request += 1
|
||||
if new_partner_request == 0:
|
||||
continue
|
||||
new_partner_succ = 0
|
||||
for r in m.query('action', 'done').where(lambda x: x['rno']==i and (x['a']==pid or x['b']==pid)).raw_data:
|
||||
if r['a'] == pid:
|
||||
if r['b'] not in previous_round_partner:
|
||||
new_partner_succ += 1
|
||||
else:
|
||||
if r['a'] not in previous_round_partner:
|
||||
new_partner_succ += 1
|
||||
succ[len(neighborhood)-2] += new_partner_succ
|
||||
total[len(neighborhood)-2] += new_partner_request
|
||||
|
||||
|
||||
red = '#d63031'
|
||||
fig = plt.figure(figsize=(6.4, 4))
|
||||
ax = fig.gca()
|
||||
bar_width = 0.35
|
||||
opacity = 1
|
||||
error_config = {'ecolor': '0.3', 'capsize': 4}
|
||||
rects1 = ax.bar(k, succ, bar_width,
|
||||
alpha=opacity, color='#00b894',
|
||||
# yerr=c_req_suc_std, error_kw=error_config,
|
||||
label='Success')
|
||||
rects3 = ax.bar(k + bar_width, total, bar_width,
|
||||
alpha=opacity, color='#fdcb6e',
|
||||
# yerr=d_req_suc_mean, error_kw=error_config,
|
||||
label='Requests')
|
||||
|
||||
ax.set_xlabel('k')
|
||||
ax.set_ylabel('Count')
|
||||
# ax.set_title('Scores by group and gender')
|
||||
ax.set_xticks(k + bar_width / 2)
|
||||
ax.set_xticklabels(k)
|
||||
ax.legend()
|
||||
ax2 = ax.twinx()
|
||||
ax2.plot(k, succ/total,linewidth=2,color=red, ls='--')
|
||||
ax2.set_ylabel("Frequency of new partners", family='sans-serif', color=red)
|
||||
ax2.tick_params(axis='y', labelcolor=red)
|
||||
ax2.set_ylim(0,1)
|
||||
fig.tight_layout()
|
||||
# plt.show()
|
||||
# plt.savefig('graph/k_and_new_partner.eps')
|
||||
|
||||
print("[succ vs k]pearson: %f, p-value: %f" % pearsonr(succ, k))
|
||||
print("[total vs k]pearson: %f, p-value: %f" % pearsonr(total, k))
|
||||
print("[rate vs k]pearson: %f, p-value: %f" % pearsonr(succ/total, k))
|
||||
print(np.average(succ/total))
|
||||
206
tau_p_co.py
Normal file
206
tau_p_co.py
Normal file
@ -0,0 +1,206 @@
|
||||
import json
|
||||
from matplotlib import pyplot as plt
|
||||
from island.match import Match
|
||||
from island.matches import Matches
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
from scipy.stats import pearsonr
|
||||
from matplotlib import markers
|
||||
|
||||
def error(f,x,y):
|
||||
return sp.sum((f(x)-y)**2)
|
||||
|
||||
def get_tr(m, i, target, nb, sv):
|
||||
"""
|
||||
# 计算tau_p的方式是统计周围邻居剩余的tr
|
||||
# 本函数计算第i轮,所有有消耗tr的player,最后剩余的tr
|
||||
# 由于是计算剩余tr,所以不能计算和target之间的交互
|
||||
# nb是target的邻居
|
||||
"""
|
||||
trs = {}
|
||||
req = m.query('action', 'request').where(lambda x: x['rno'] == i+1)
|
||||
app = m.query('action', 'approve').where(lambda x: x['rno'] == i+1).raw_data
|
||||
can = m.query('action', 'cancel').where(lambda x: x['rno'] == i+1).raw_data
|
||||
den = m.query('action', 'deny').where(lambda x: x['rno'] == i+1).raw_data
|
||||
|
||||
fr = []
|
||||
for r in m.query('action', 'done').where(lambda x: x['rno'] == i and (x['a'] == target or x['b'] == target)).raw_data:
|
||||
if r['a'] == target:
|
||||
fr.append(r['b'])
|
||||
elif r['b'] == target:
|
||||
fr.append(r['a'])
|
||||
|
||||
truenb = []
|
||||
for r in nb:
|
||||
if r not in fr and r in sv:
|
||||
truenb.append(r)
|
||||
trs[r] = 1440
|
||||
|
||||
for r in req.raw_data:
|
||||
if r['from'] in truenb and r['to'] != target :
|
||||
if r['from'] not in trs:
|
||||
trs[r['from']] = 1440
|
||||
trs[r['from']] -= r['tr']
|
||||
|
||||
for r in app:
|
||||
if r['from'] in truenb and r['to'] != target:
|
||||
if r['from'] not in trs:
|
||||
trs[r['from']] = 1440
|
||||
trs[r['from']] -= r['tr']
|
||||
|
||||
for r in can:
|
||||
if r['from'] in trs and r['to'] != target:
|
||||
trs[r['from']] += req.where(lambda x: x['from'] == r['from'] and x['to'] == r['to'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
|
||||
|
||||
for r in den:
|
||||
if r['to'] in trs and r['from'] != target:
|
||||
trs[r['to']] += req.where(lambda x: x['from'] == r['to'] and x['to'] == r['from'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
|
||||
|
||||
return trs
|
||||
|
||||
|
||||
matches = Matches('wos-data-new')
|
||||
max_round = 15
|
||||
|
||||
survivals = {}
|
||||
with open('survivals.json', 'r') as f:
|
||||
survivals = json.load(f)
|
||||
|
||||
neighbors = {}
|
||||
coopr = []
|
||||
x = np.arange(1, max_round)
|
||||
mwCo = {} # Match-wise frequency of cooperation
|
||||
mwTau = {} # Match-wise Tau
|
||||
bx = []
|
||||
tau = []
|
||||
|
||||
for i in range(len(matches.data)):
|
||||
m = matches.data[i]
|
||||
n = {}
|
||||
for r in m.query('neighbor', 'create').raw_data:
|
||||
if r['a'] in n:
|
||||
n[r['a']].append(r['b'])
|
||||
else:
|
||||
n[r['a']] = [r['b']]
|
||||
|
||||
if r['b'] in n:
|
||||
n[r['b']].append(r['a'])
|
||||
else:
|
||||
n[r['b']] = [r['a']]
|
||||
neighbors[matches.names[i]] = n
|
||||
|
||||
for i in range(max_round):
|
||||
co = []
|
||||
for j in range(len(matches.data)):
|
||||
coop = 0
|
||||
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
|
||||
for row in rows:
|
||||
if row['act_a'] == 'C':
|
||||
coop += 1
|
||||
if row['act_b'] == 'C':
|
||||
coop += 1
|
||||
|
||||
if rows:
|
||||
co.append(float(coop) / float(len(rows)*2))
|
||||
mwCo["%s-%d"%(j,i)] = co[-1]
|
||||
bx.append(co)
|
||||
if co:
|
||||
coopr.append(np.average(co))
|
||||
|
||||
|
||||
for i in range(max_round-1):
|
||||
tp = []
|
||||
for j in range(len(matches.data)):
|
||||
if i == 0:
|
||||
for r in matches.data[j].query('player', 'join').raw_data:
|
||||
t = 0
|
||||
k = r['pid']
|
||||
if k not in neighbors[matches.names[j]]:
|
||||
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
|
||||
else:
|
||||
t = 1440 * len(neighbors[matches.names[j]][k])
|
||||
tp.append(t if t < 1440 else 1440)
|
||||
mwTau["%s-%d"%(j,i)] = tp[-1]
|
||||
else:
|
||||
if str(i) not in survivals[matches.names[j]]:
|
||||
continue
|
||||
for k in survivals[matches.names[j]][str(i)]:
|
||||
t = 0
|
||||
if k not in neighbors[matches.names[j]]:
|
||||
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
|
||||
else:
|
||||
trs = get_tr(matches.data[j], i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
|
||||
for l in neighbors[matches.names[j]][k]:
|
||||
if l in trs:
|
||||
t += trs[l]
|
||||
tp.append(t if t < 1440 else 1440)
|
||||
mwTau["%s-%d"%(j,i)] = tp[-1]
|
||||
|
||||
if tp:
|
||||
tau.append(np.average(tp))
|
||||
else:
|
||||
tau.append(0)
|
||||
|
||||
|
||||
blue = '#0984e3'
|
||||
red = '#d63031'
|
||||
|
||||
# p1折线图
|
||||
# fig = plt.figure(figsize=(6.4, 3.6))
|
||||
# ax = fig.gca()
|
||||
# ax.plot(x, coopr, color=blue, linewidth=3)
|
||||
# ax.set_ylim(0.5, 1)
|
||||
# ax2 = ax.twinx()
|
||||
# ax2.plot(x, tau, color=red, linewidth=3)
|
||||
# ax2.set_ylim(0,1440)
|
||||
# ax.set_xlim(1,14)
|
||||
# ax.set_xlabel("Rounds")
|
||||
# ax.set_ylabel("Frequency of Cooperation", color=blue)
|
||||
# ax.tick_params(axis='y', labelcolor=blue)
|
||||
# ax2.set_ylabel("$\\tau_{p}$", family='sans-serif', color=red)
|
||||
# ax2.tick_params(axis='y', labelcolor=red)
|
||||
|
||||
# plt.tight_layout()
|
||||
# # plt.show()
|
||||
# plt.savefig('graph/tau_p_co_plot.eps')
|
||||
|
||||
tau2 = []
|
||||
coopr2 = []
|
||||
tau_r = []
|
||||
coopr_r = []
|
||||
for i in range(len(tau)):
|
||||
if tau[i] <= 720:
|
||||
tau2.append(tau[i])
|
||||
coopr2.append(coopr[i])
|
||||
else:
|
||||
tau_r.append(tau[i])
|
||||
coopr_r.append(coopr[i])
|
||||
|
||||
# p2散点图
|
||||
fig = plt.figure(figsize=(6.4, 3.6))
|
||||
ax = fig.gca()
|
||||
# ax.set_ylim(0.5, 1)
|
||||
fp1,residuals,rank,sv,rcond = sp.polyfit(tau2, coopr2, 1, full=True)
|
||||
print("残差:",residuals)
|
||||
print('Model parameter:',fp1)
|
||||
f1 = sp.poly1d(fp1)
|
||||
print("error= %f" % error(f1, tau2, coopr2))
|
||||
# fx = sp.linspace(0,max(tau2),1000)
|
||||
fx = sp.linspace(0,720,2)
|
||||
|
||||
plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
|
||||
plt.scatter(tau2, coopr2, color=blue, linewidths=2, zorder=100)
|
||||
plt.scatter(tau_r, coopr_r, color='white', edgecolors=blue, linewidths=2, zorder=101)
|
||||
ax.set_xlabel('$\\tau_{p}$', family='sans-serif')
|
||||
ax.set_ylabel('Frequency of Cooperation')
|
||||
ax.set_xlim(0, 1440)
|
||||
ax.set_xticks(sp.linspace(0, 1440, 13))
|
||||
ax.set_ylim(0.5, 1)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
# plt.savefig('graph/tau_p_co_sca.eps')
|
||||
|
||||
|
||||
|
||||
# 皮尔逊相关系数
|
||||
print("pearson: %f, p-value: %f" % pearsonr(tau2, coopr2))
|
||||
Loading…
Reference in New Issue
Block a user