import numpy as np from matplotlib import pyplot as plt import scipy as sp from scipy.stats import pearsonr from matplotlib import markers from sys import argv blue = '#0984e3' red = '#d63031' def error(f,x,y): return sp.sum((f(x)-y)**2) def p2(e, rw, postfix, show=True, showline=True): # p2散点图 fig = plt.figure(figsize=(4, 3)) ax = fig.gca() if showline: fp1,residuals,rank,sv,rcond = sp.polyfit(e, rw, 1, full=True) print("残差:",residuals) print('Model parameter:',fp1) print("Other parameters: rank=%s, sv=%s, rcond=%s"%(str(rank), str(sv), str(rcond))) f1 = sp.poly1d(fp1) print("error= %f" % error(f1, e, rw)) fx = sp.linspace(np.min(e), np.max(e), 2) plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0) plt.scatter(e, rw, color='white', edgecolors=blue, linewidths=2, zorder=101) ax.set_xlabel(r'$TtD$', family='sans-serif', size=20) ax.set_ylabel(r'Breaking Rate', family='sans-serif', size=20) # ax.set_xlim(0, 1440) # ax.set_xticks(sp.linspace(int(min(e)*0.9), int(max(e)*1.1), 4)) ax.tick_params(labelsize=14) ax.set_ylim(0, 0.6) ax.set_yticks(sp.linspace(0, 0.6, 5)) plt.tight_layout() if show: plt.show() else: plt.savefig("graph/eid_co_sca_%s.eps" % postfix) # 皮尔逊相关系数 print("pearson: %f, p-value: %f" % pearsonr(e, rw)) def p2c(e,c,m,s): p2(e,c,m,s,False) def plot(mode, show): rw = np.loadtxt("outputs/BR_%s.csv" % mode, delimiter=',') e = np.loadtxt("outputs/EID_%s.csv" % mode, delimiter=',') p2(e[:-1], rw[1:], mode, show) # if mode == 'SURVIVE': # p2(e[:-1], rw[1:], mode, show) # else: # p2c(e[:-1], rw[1:], mode, show) if __name__ == '__main__': # eid_plot c/s 1/2 t/f mode = 'CLASSIC' if argv[1] == 'c' else 'SURVIVE' show = argv[2] == 't' plot(mode, show) """ SURVIVE 残差: [ 0.06081364] Model parameter: [ -3.54739130e-04 4.41956696e-01] Other parameters: rank=2, sv=[ 1.40523958 0.15906514], rcond=3.10862446895e-15 error= 0.060814 pearson: -0.837958, p-value: 0.000183 CLASSIC pearson: 0.384519, p-value: 0.174626 """