from scipy.stats import chi2_contingency as chi2 import numpy as np from matplotlib import pyplot as plt ''' survive break_tie = [13.717872086072923, 86.26126126126125] stay_connected = [86.28212791392707, 13.738738738738737] classic break_tie = [8.331150117893634, 42.07858048162231] stay_connected = [91.66884988210636, 57.9214195183777] ''' """ NEW VERSION """ bt_s = [13.717872086072923, 86.26126126126125] bt_c = [8.331150117893634, 42.07858048162231] fig = plt.figure(figsize=(3.3, 3)) ax = fig.gca() index = np.arange(2) bar_width = 0.35 opacity = 1 error_config = {'ecolor': '0.3'} rects1 = ax.bar(index, bt_s, bar_width, alpha=opacity, color='#d63031', label='Dissipative') rects2 = ax.bar(index + bar_width, bt_c, bar_width, alpha=opacity, color='#00b894', label='Classical') # ax.set_ylabel('Probability of Breaking Partnership(%)') ax.set_ylabel('Probability(%)') # ax.set_title('Behavior after Moves') ax.set_xticks(index + bar_width / 2) ax.set_xticklabels(('C', 'D')) ax.set_xlabel('Previous Move') ax.set_ylim(0,100) ax.tick_params(direction='in') ax.legend(loc='upper left') fig.tight_layout() # plt.show() plt.savefig("graph/break_tie_bar.eps")