import numpy as np from matplotlib import pyplot as plt import scipy as sp from scipy.stats import pearsonr from matplotlib import markers from sys import argv blue = '#0984e3' red = '#d63031' def error(f,x,y): return sp.sum((f(x)-y)**2) def p1(x, coopr, e, postfix, show=True): fig = plt.figure(figsize=(4.5, 3)) ax = fig.gca() ax.plot(x, coopr, color=blue, linewidth=2, label="$f_c$") ax.set_ylim(0, 1) ax.set_yticks(sp.linspace(0, 1, 5)) ax2 = ax.twinx() ax2.plot(x[1:], e[1:], color=red, linewidth=2, label=r"$E_{i,D}$") # ax2.set_ylim(0, 1440) # ax2.set_yticks(sp.linspace(0, 1440, 5)) ax2.tick_params(labelsize=18) ax.tick_params(labelsize=18) ax.set_xlim(1, 15) ax.set_xlabel("Rounds", size=22) ax.set_ylabel(r"$f_c$", family='sans-serif', color=blue, size=22) ax.tick_params(axis='y', labelcolor=blue) ax2.set_ylabel(r"$E_{i,D}$", family='sans-serif', color=red, size=22) ax2.tick_params(axis='y', labelcolor=red) plt.tight_layout() if show: plt.show() else: plt.savefig("graph/eid_co_plot_%s.eps" % postfix) def p2(e, coopr, postfix, show=True, showline=True): # p2散点图 fig = plt.figure(figsize=(4, 3)) ax = fig.gca() if showline: fp1,residuals,rank,sv,rcond = sp.polyfit(e, coopr, 1, full=True) print("残差:",residuals) print('Model parameter:',fp1) print("Other parameters: rank=%s, sv=%s, rcond=%s"%(str(rank), str(sv), str(rcond))) f1 = sp.poly1d(fp1) print("error= %f" % error(f1, e, coopr)) fx = sp.linspace(np.min(e), np.max(e), 2) plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0) plt.scatter(e, coopr, color='white', edgecolors=blue, linewidths=2, zorder=101) ax.set_xlabel(r'$E_{i,D}$', family='sans-serif', size=20) ax.set_ylabel(r'$f_{c}$', family='sans-serif', size=20) # ax.set_xlim(0, 1440) # ax.set_xticks(sp.linspace(int(min(e)*0.9), int(max(e)*1.1), 4)) ax.tick_params(labelsize=14) ax.set_ylim(0.6, 1) ax.set_yticks(sp.linspace(0.6, 1, 5)) plt.tight_layout() if show: plt.show() else: plt.savefig("graph/eid_co_sca_%s.eps" % postfix) # 皮尔逊相关系数 print("pearson: %f, p-value: %f" % pearsonr(e, coopr)) def p2c(e,c,m,s): p2(e,c,m,s,False) def plot(mode, show, isp1): coopr = np.loadtxt("outputs/CR_%s.csv" % mode, delimiter=',') x = np.arange(1, 16) e = np.loadtxt("outputs/EID_%s.csv" % mode, delimiter=',') if isp1: p1(x, coopr, e, mode, show) else: if mode == 'SURVIVE': p2(e[1:12], coopr[1:12], mode, show) else: p2c(e[1:], coopr[1:], mode, show) if __name__ == '__main__': # eid_plot c/s 1/2 t/f mode = 'CLASSIC' if argv[1] == 'c' else 'SURVIVE' isp1 = argv[2] == '1' show = argv[3] == 't' plot(mode, show, isp1) """ SURVIVE 残差: [ 0.10769174] Model parameter: [ 1.33390242e-04 7.29761895e-01] Other parameters: rank=2, sv=[ 1.37254846 0.34075025], rcond=3.33066907388e-15 error= 0.107692 pearson: 0.709599, p-value: 0.003045 CLASSIC 残差: [ 0.00992721] Model parameter: [ 3.14661037e-05 7.35284315e-01] Other parameters: rank=2, sv=[ 1.41231835 0.07319068], rcond=3.33066907388e-15 error= 0.009927 pearson: 0.309326, p-value: 0.261915 """