127 lines
3.3 KiB
Python
127 lines
3.3 KiB
Python
import json
|
|
from matplotlib import pyplot as plt
|
|
from island.match import Match
|
|
from island.matches import Matches
|
|
from numpy import mean, std
|
|
import numpy as np
|
|
|
|
|
|
matches = Matches('wos-data-new-2')
|
|
max_round = 15
|
|
|
|
survivals = {}
|
|
with open('survivals-2.json', 'r') as f:
|
|
survivals = json.load(f)
|
|
|
|
neighbors = {}
|
|
|
|
cmean = []
|
|
dmean = []
|
|
cstd = []
|
|
dstd = []
|
|
|
|
|
|
def is_cooperator(rows, pid):
|
|
m = 0
|
|
mall = 0
|
|
for r in rows:
|
|
if pid == r['a'] and r['act_a'] == 'C':
|
|
m += 1
|
|
mall += 1
|
|
elif pid == r['a'] and r['act_a'] == 'D':
|
|
mall += 1
|
|
elif pid == r['b'] and r['act_b'] == 'C':
|
|
m += 1
|
|
mall += 1
|
|
elif pid == r['b'] and r['act_b'] == 'D':
|
|
mall += 1
|
|
return m*2 >= mall
|
|
|
|
|
|
for i in range(len(matches.data)):
|
|
m = matches.data[i]
|
|
n = {}
|
|
for r in m.query('neighbor', 'create').raw_data:
|
|
if r['a'] in n:
|
|
n[r['a']].append(r['b'])
|
|
else:
|
|
n[r['a']] = [r['b']]
|
|
|
|
if r['b'] in n:
|
|
n[r['b']].append(r['a'])
|
|
else:
|
|
n[r['b']] = [r['a']]
|
|
neighbors[matches.names[i]] = n
|
|
|
|
|
|
for i in range(max_round):
|
|
cneigh = []
|
|
dneigh = []
|
|
for j in range(len(matches.data)):
|
|
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
|
|
calced = set()
|
|
for row in rows:
|
|
if row['a'] not in calced:
|
|
nn = 0
|
|
for k in neighbors[matches.names[j]][row['a']]:
|
|
if k in survivals[matches.names[j]][str(i+1)]:
|
|
nn += 1
|
|
|
|
if is_cooperator(rows, row['a']):
|
|
cneigh.append(nn)
|
|
else:
|
|
dneigh.append(nn)
|
|
|
|
calced.add(row['a'])
|
|
if row['b'] not in calced:
|
|
nn = 0
|
|
for k in neighbors[matches.names[j]][row['b']]:
|
|
if k in survivals[matches.names[j]][str(i+1)]:
|
|
nn += 1
|
|
if is_cooperator(rows, row['b']):
|
|
cneigh.append(nn)
|
|
else:
|
|
dneigh.append(nn)
|
|
calced.add(row['b'])
|
|
|
|
if cneigh:
|
|
cm = mean(cneigh)
|
|
cs = std(cneigh)
|
|
else:
|
|
cm = 0
|
|
cs = 0
|
|
cmean.append(cm)
|
|
cstd.append(cs)
|
|
if dneigh:
|
|
dm = mean(dneigh)
|
|
ds = std(dneigh)
|
|
else:
|
|
dm = 0
|
|
ds = 0
|
|
dmean.append(dm)
|
|
dstd.append(ds)
|
|
|
|
fig = plt.figure(figsize=(6.4, 3.6))
|
|
ax = fig.gca()
|
|
index = np.arange(max_round)
|
|
bar_width = 0.45
|
|
opacity = 1
|
|
error_config = dict(ecolor='#2d3436', capsize=0, elinewidth=1)
|
|
rects1 = ax.bar(index, cmean, bar_width,
|
|
alpha=opacity, color='#0984e3',
|
|
yerr=cstd, error_kw=error_config,
|
|
label='Cooperator')
|
|
rects2 = ax.bar(index + bar_width, dmean, bar_width,
|
|
alpha=opacity, color='#d63031',
|
|
yerr=dstd, error_kw=error_config,
|
|
label='Defector')
|
|
|
|
ax.set_xlabel('Round')
|
|
ax.set_ylabel('Size of the Neighborhood')
|
|
# ax.set_title('Scores by group and gender')
|
|
ax.set_xticks(index + bar_width / 2)
|
|
ax.set_xticklabels(index+1)
|
|
ax.legend()
|
|
fig.tight_layout()
|
|
plt.show()
|
|
# plt.savefig('graph/neigh_per_round.eps') |