swdata/rewiring_rate.py
2018-06-16 21:37:40 +08:00

143 lines
4.7 KiB
Python

import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
import numpy as np
import scipy as sp
from scipy.stats import pearsonr
from matplotlib import markers
def error(f,x,y):
return sp.sum((f(x)-y)**2)
if __name__ == '__main__':
matches = Matches('wos-data-new-2')
max_round = 15
survivals = {}
with open('survivals-2.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
rewires = []
x = np.arange(1, max_round)
mwRe = {} # Match-wise frequency of rewiring
mwTau = {} # Match-wise Tau
tau = []
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for i in range(max_round-1):
re = []
for j in range(len(matches.data)):
rewire = 0
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
for r in rows:
if matches.data[j].query('action', 'done').where(lambda x: x['rno']==i and ((x['a']==r['a'] and x['b']==r['b']) or (x['a']==r['b'] and x['b']==r['a']))).count() == 0:
rewire += 1
if rows:
re.append(float(rewire) / float(len(rows)*2))
mwRe["%s-%d"%(j,i)] = re[-1]
if re:
rewires.append(np.average(re))
for i in range(max_round-1):
tp = []
for j in range(len(matches.data)):
if i == 0:
for r in matches.data[j].query('player', 'join').raw_data:
t = 0
k = r['pid']
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
t = 1440 * len(neighbors[matches.names[j]][k])
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
else:
if str(i) not in survivals[matches.names[j]]:
continue
for k in survivals[matches.names[j]][str(i)]:
t = 0
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
trs = matches.data[j].get_tr(i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
for l in neighbors[matches.names[j]][k]:
if l in trs:
t += trs[l]
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
if tp:
tau.append(np.average(tp))
else:
tau.append(0)
green = '#00b894'
red = '#d63031'
# p1折线图
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
ax.plot(x, rewires, color=green, linewidth=3)
ax.set_ylim(0, 0.5)
ax2 = ax.twinx()
ax2.plot(x, tau, color=red, linewidth=3)
ax2.set_ylim(0,1440)
ax.set_xlim(1,14)
ax.set_xlabel("Rounds")
ax.set_ylabel("Rewiring Rate", color=green)
ax.tick_params(axis='y', labelcolor=green)
ax2.set_ylabel("$\\tau_{p}$", family='sans-serif', color=red)
ax2.tick_params(axis='y', labelcolor=red)
plt.tight_layout()
plt.show()
# plt.savefig('graph/tau_p_rewire_plot.eps')
# # p2散点图
# fig = plt.figure(figsize=(6.4, 3.6))
# ax = fig.gca()
# # ax.set_ylim(0.5, 1)
# fp1,residuals,rank,sv,rcond = sp.polyfit(tau, rewires, 1, full=True)
# print("残差:",residuals)
# print('Model parameter:',fp1)
# f1 = sp.poly1d(fp1)
# print("error= %f" % error(f1, tau, rewires))
# # fx = sp.linspace(0,max(tau2),1000)
# fx = sp.linspace(0,1440,2)
# plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
# plt.scatter(tau, rewires, color=green, linewidths=2, zorder=100)
# # plt.scatter(tau_r, coopr_r, color='white', edgecolors=green, linewidths=2, zorder=101)
# ax.set_xlabel('$\\tau_{p}$', family='sans-serif')
# ax.set_ylabel('Rewiring Rate')
# ax.set_xlim(0, 1440)
# ax.set_xticks(sp.linspace(0, 1440, 13))
# ax.set_ylim(0, 0.6)
# plt.tight_layout()
# plt.show()
# plt.savefig('graph/tau_p_rewire_sca.eps')
# # 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau, rewires))