swdata/plot_defect_alive.py
2018-03-11 17:16:26 +08:00

55 lines
1.5 KiB
Python

import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
matches = Matches('wos-data-new')
max_round = 17
alive = []
yerr_min = []
yerr_max = []
x = []
al_al = []
survivals = {}
with open('winner.json','r') as f:
survivals = json.load(f)
for i in range(max_round):
defects = []
for j in range(len(matches.data)):
defector = set()
for row in matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1 and (x['act_a']=='D' or x['act_b']=='D')).raw_data:
if row['act_a']=='D':
defector.add(row['a'])
if row['act_b'] == 'D':
defector.add(row['b'])
if defector:
# print("[%d,%d] %s" % (i,j,str(defector)))
incr = 0
for k in survivals[matches.names[j]]:
if k in defector:
incr += 1
# print(k)
defects.append(float(incr) / float(len(defector)))
print(i)
print(defects)
if defects:
al_al.append(defects)
alive.append(sum(defects) / len(defects))
yerr_min.append(alive[-1] - min(defects))
yerr_max.append(max(defects) - alive[-1])
print("%f, %f, %f"%(yerr_min[-1], yerr_max[-1], alive[-1]))
x.append(i+1)
else:
al_al.append([])
plt.figure()
# plt.errorbar(x, alive, yerr=[yerr_min, yerr_max], fmt='o', capsize=4)
plt.boxplot(al_al, showmeans=True, meanline=True)
plt.show()
# plt.savefig('graph/survive_after_defect.png')