swdata/tau_p_co.py
2018-08-19 23:26:08 +08:00

195 lines
5.9 KiB
Python

import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
import numpy as np
import scipy as sp
from scipy.stats import pearsonr
from matplotlib import markers
'''
计算tau_p和合作频率之间的关系
'''
def error(f,x,y):
return sp.sum((f(x)-y)**2)
def p1(x, coopr, tau, postfix, show=True):
fig = plt.figure(figsize=(5, 4))
ax = fig.gca()
ax.plot(x, coopr, color=blue, linewidth=2, label="$f_c$")
ax.set_ylim(0, 1)
ax2 = ax.twinx()
ax2.plot(x, tau, color=red, linewidth=2, label=r"$\tau_p$")
ax2.set_ylim(0, 1440)
ax.set_xlim(1, 15)
ax.set_xlabel("Rounds")
ax.set_ylabel(r"$f_c$", color=blue)
ax.tick_params(axis='y', labelcolor=blue)
ax2.set_ylabel(r"$\tau_{p}$", family='sans-serif', color=red)
ax2.tick_params(axis='y', labelcolor=red)
fig.legend()
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig("graph/tau_p_co_plot_%s.eps" % postfix)
def p2(tau, coopr, limited, postfix, show=True):
tau2 = []
coopr2 = []
tau_r = []
coopr_r = []
for i in range(len(tau)):
if tau[i] <= limited:
tau2.append(tau[i])
coopr2.append(coopr[i])
else:
tau_r.append(tau[i])
coopr_r.append(coopr[i])
# p2散点图
fig = plt.figure(figsize=(4, 3))
ax = fig.gca()
# ax.set_ylim(0.5, 1)
fp1,residuals,rank,sv,rcond = sp.polyfit(tau2, coopr2, 1, full=True)
print("残差:",residuals)
print('Model parameter:',fp1)
print("Other parameters: rank=%s, sv=%s, rcond=%s"%(str(rank), str(sv), str(rcond)))
f1 = sp.poly1d(fp1)
print("error= %f" % error(f1, tau2, coopr2))
fx = sp.linspace(0, limited, 2)
plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
plt.scatter(tau2, coopr2, color=blue, linewidths=2, zorder=100)
plt.scatter(tau_r, coopr_r, color='white', edgecolors=blue, linewidths=2, zorder=101)
ax.set_xlabel(r'$\tau_{p}$', family='sans-serif')
ax.set_ylabel(r'$f_{c}$', family='sans-serif')
ax.set_xlim(0, 1440)
ax.set_xticks(sp.linspace(0, 1440, 7))
ax.set_ylim(0.5, 1)
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig("graph/tau_p_co_sca_%s.eps" % postfix)
# 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau2, coopr2))
if __name__ == '__main__':
matches = Matches.from_profile_expr(lambda r: 'SURVIVE' in r)
max_round = 15
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
coopr = []
x = np.arange(1, max_round+1)
mwCo = {} # Match-wise frequency of cooperation
mwTau = {} # Match-wise Tau
bx = []
tau = []
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for i in range(max_round):
co = []
for j in range(len(matches.data)):
coop = 0
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
for row in rows:
if row['act_a'] == 'C':
coop += 1
if row['act_b'] == 'C':
coop += 1
if rows:
co.append(float(coop) / float(len(rows)*2))
mwCo["%s-%d"%(j,i)] = co[-1]
bx.append(co)
if co:
coopr.append(np.average(co))
else:
coopr.append(0)
for i in range(max_round):
tp = []
for j in range(len(matches.data)):
if i == 0:
for r in matches.data[j].query('player', 'join').raw_data:
t = 0
k = r['pid']
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
t = 1440 * len(neighbors[matches.names[j]][k])
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
else:
if str(i) not in survivals[matches.names[j]]:
continue
for k in survivals[matches.names[j]][str(i)]:
t = 0
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
trs = matches.data[j].get_tr(i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
for l in neighbors[matches.names[j]][k]:
if l in trs:
t += trs[l]
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
if tp:
tau.append(np.average(tp))
else:
tau.append(0)
blue = '#0984e3'
red = '#d63031'
# p1折线图
# p1(x, coopr, tau, 'classic', False)
p2(tau[:12], coopr[:12], 720, 'survive', True)
# p2(tau, coopr, 1440, 'classic', False)
'''
survive
残差: [ 0.00548837]
Model parameter: [ -2.71223484e-04 1.00851422e+00]
Other parameters: rank=2, sv=[ 1.36321571 0.37635479], rcond=1.99840144433e-15
error= 0.005488
pearson: -0.829102, p-value: 0.005723
classic
残差: [ 0.00489393]
Model parameter: [ -1.38823596e-04 9.82787424e-01]
Other parameters: rank=2, sv=[ 1.41298532 0.05892772], rcond=3.33066907388e-15
error= 0.004894
pearson: -0.582154, p-value: 0.022790
'''