swdata/neighbor_per_round.py
2018-03-23 13:47:20 +08:00

127 lines
3.3 KiB
Python

import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
from numpy import mean, std
import numpy as np
matches = Matches('wos-data-new')
max_round = 15
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
cmean = []
dmean = []
cstd = []
dstd = []
def is_cooperator(rows, pid):
m = 0
mall = 0
for r in rows:
if pid == r['a'] and r['act_a'] == 'C':
m += 1
mall += 1
elif pid == r['a'] and r['act_a'] == 'D':
mall += 1
elif pid == r['b'] and r['act_b'] == 'C':
m += 1
mall += 1
elif pid == r['b'] and r['act_b'] == 'D':
mall += 1
return m*2 >= mall
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for i in range(max_round):
cneigh = []
dneigh = []
for j in range(len(matches.data)):
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
calced = set()
for row in rows:
if row['a'] not in calced:
nn = 0
for k in neighbors[matches.names[j]][row['a']]:
if k in survivals[matches.names[j]][str(i+1)]:
nn += 1
if is_cooperator(rows, row['a']):
cneigh.append(nn)
else:
dneigh.append(nn)
calced.add(row['a'])
if row['b'] not in calced:
nn = 0
for k in neighbors[matches.names[j]][row['b']]:
if k in survivals[matches.names[j]][str(i+1)]:
nn += 1
if is_cooperator(rows, row['b']):
cneigh.append(nn)
else:
dneigh.append(nn)
calced.add(row['b'])
if cneigh:
cm = mean(cneigh)
cs = std(cneigh)
else:
cm = 0
cs = 0
cmean.append(cm)
cstd.append(cs)
if dneigh:
dm = mean(dneigh)
ds = std(dneigh)
else:
dm = 0
ds = 0
dmean.append(dm)
dstd.append(ds)
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
index = np.arange(max_round)
bar_width = 0.45
opacity = 1
error_config = dict(ecolor='#2d3436', capsize=0, elinewidth=1)
rects1 = ax.bar(index, cmean, bar_width,
alpha=opacity, color='#0984e3',
yerr=cstd, error_kw=error_config,
label='Cooperator')
rects2 = ax.bar(index + bar_width, dmean, bar_width,
alpha=opacity, color='#d63031',
yerr=dstd, error_kw=error_config,
label='Defector')
ax.set_xlabel('Round')
ax.set_ylabel('Size of the Neighborhood')
# ax.set_title('Scores by group and gender')
ax.set_xticks(index + bar_width / 2)
ax.set_xticklabels(index+1)
ax.legend()
fig.tight_layout()
# plt.show()
plt.savefig('graph/neigh_per_round.eps')