swdata/rewiring_rate.py
2018-09-02 15:40:57 +08:00

197 lines
6.2 KiB
Python

import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
import numpy as np
import scipy as sp
from scipy.stats import pearsonr
from matplotlib import markers
def error(f,x,y):
return sp.sum((f(x)-y)**2)
def p1(x, rewires, tau, postfix, show):
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
ax.plot(x, rewires, color=green, linewidth=3)
ax.set_ylim(0, 0.5)
ax2 = ax.twinx()
ax2.plot(x, tau, color=red, linewidth=3)
ax2.set_ylim(0, 1440)
ax.set_xlim(2, 15)
ax.set_xlabel("Rounds")
ax.set_ylabel("Rewiring Rate", color=green)
ax.tick_params(axis='y', labelcolor=green)
ax2.set_ylabel("$\\tau_{p}$", family='sans-serif', color=red)
ax2.tick_params(axis='y', labelcolor=red)
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig("graph/tau_p_rewire_plot_%s.eps" % postfix)
def p2c(tau, rewires, show):
# # p2散点图
fig = plt.figure(figsize=(4, 3))
ax = fig.gca()
plt.scatter(tau, rewires, color=green, linewidths=2, zorder=100)
ax.set_xlabel('$\\tau_{f}$', family='sans-serif', size=20)
ax.set_ylabel('Rewiring Rate', size=20)
ax.set_xlim(0, 1440)
ax.set_ylim(0, 0.6)
ax.set_xticks(sp.linspace(0, 1440, 5))
ax.tick_params(labelsize=14)
ax.set_ylim(0, 0.6)
ax.set_yticks(sp.linspace(0, 0.6, 5))
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig("graph/tau_f_rewire_sca_c.eps")
# 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau, rewires))
def p2(tau, rewires, postfix, show):
# # p2散点图
fig = plt.figure(figsize=(4, 3))
ax = fig.gca()
fp1,residuals,rank,sv,rcond = sp.polyfit(tau, rewires, 1, full=True)
print("残差:",residuals)
print('Model parameter:',fp1)
f1 = sp.poly1d(fp1)
print("error= %f" % error(f1, tau, rewires))
print("Other parameters: rank=%s, sv=%s, rcond=%s" % (str(rank), str(sv), str(rcond)))
# fx = sp.linspace(0,max(tau2),1000)
fx = sp.linspace(0,1440,2)
plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
plt.scatter(tau, rewires, color=green, linewidths=2, zorder=100)
# plt.scatter(tau_r, coopr_r, color='white', edgecolors=green, linewidths=2, zorder=101)
ax.set_xlabel('$\\tau_{f}$', family='sans-serif', size=20)
ax.set_ylabel('Rewiring Rate', size=20)
ax.set_xlim(0, 1440)
ax.set_ylim(0, 0.6)
ax.set_xticks(sp.linspace(0, 1440, 5))
ax.tick_params(labelsize=14)
ax.set_ylim(0, 0.6)
ax.set_yticks(sp.linspace(0, 0.6, 5))
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig("graph/tau_f_rewire_sca_%s.eps" % postfix)
# 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau, rewires))
if __name__ == '__main__':
mode = 'CLASSIC'
matches = Matches.from_profile_expr(lambda r: mode in r)
max_round = 15
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
rewires = []
x = np.arange(2, max_round+1)
mwRe = {} # Match-wise frequency of rewiring
mwTau = {} # Match-wise Tau
tau = []
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for i in range(1, max_round):
re = []
for j in range(len(matches.data)):
rewire = 0
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
for r in rows:
if matches.data[j].query('action', 'done').where(lambda x: x['rno']==i and ((x['a']==r['a'] and x['b']==r['b']) or (x['a']==r['b'] and x['b']==r['a']))).count() == 0:
rewire += 1
if rows:
re.append(float(rewire) / float(len(rows)*2))
mwRe["%s-%d"%(j,i)] = re[-1]
if re:
rewires.append(np.average(re))
for i in range(1, max_round):
tp = []
for j in range(len(matches.data)):
if i == 0:
for r in matches.data[j].query('player', 'join').raw_data:
t = 0
k = r['pid']
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
t = 1440 * len(neighbors[matches.names[j]][k])
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
else:
if str(i) not in survivals[matches.names[j]]:
continue
for k in survivals[matches.names[j]][str(i)]:
t = 0
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
trs = matches.data[j].get_tr(i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
for l in neighbors[matches.names[j]][k]:
if l in trs and trs[l] > 0:
t += trs[l]
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
if tp:
tau.append(np.average(tp))
else:
tau.append(0)
green = '#00b894'
red = '#d63031'
# p1折线图
# p1(x, rewires, tau, mode, True)
p2c(tau, rewires, False)
# p2(tau[:12], rewires[:12], mode, False)
'''
classic
残差: [ 0.05873797]
Model parameter: [ 9.81549075e-04 -9.87729952e-01]
error= 0.058738
Other parameters: rank=2, sv=[ 1.41291267 0.06064473], rcond=3.10862446895e-15
pearson: -0.507660, p-value: 0.063859
survive
残差: [ 0.00291864]
Model parameter: [ 0.0001647 -0.02264606]
error= 0.002919
Other parameters: rank=2, sv=[ 1.33444456 0.46824962], rcond=2.6645352591e-15
pearson: 0.947474, p-value: 0.000003
'''