This commit is contained in:
Flash 2025-07-27 17:57:58 +08:00
parent 3f3606a38a
commit e157a17d69
19 changed files with 20316 additions and 1 deletions

2
.gitattributes vendored
View File

@ -1 +1,3 @@
*.h5ad filter=lfs diff=lfs merge=lfs -text *.h5ad filter=lfs diff=lfs merge=lfs -text
*.glb filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text

BIN
embryo-backend/Data/CS11.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS12.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS13.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS14.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS15.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS16.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS17.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS18.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS19.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS20.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS21.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS22.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
embryo-backend/Data/CS23.glb (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -6,7 +6,7 @@ import os
np.random.seed(42) np.random.seed(42)
# 参数配置 # 参数配置
stages = [("CS7", 500), ("CS7.5", 750), ("CS8", 1000), ("CS9", 1500)] stages = [("CS7", 500), ("CS8", 1000), ("CS9", 1500)]
genes = ["SOX2", "NANOG", "T", "POU5F1", "OTX2", "ZIC2", "FOXA2", "LEFTY1"] genes = ["SOX2", "NANOG", "T", "POU5F1", "OTX2", "ZIC2", "FOXA2", "LEFTY1"]
layers = { layers = {
"Ectoderm": 1.0, # 外层 "Ectoderm": 1.0, # 外层

View File

@ -0,0 +1,30 @@
import gzip
import re
import os
# ==== 参数 ====
gtf_file = "gencode.v48.annotation.gtf.gz" # 你的 GTF 文件
output_file = "human_protein_coding_genes.txt"
script_dir = os.path.dirname(os.path.realpath(__file__))
genes = set()
# ==== 解析 GTF ====
with gzip.open(f"{script_dir}/{gtf_file}", "rt") as f:
for line in f:
if line.startswith("#"):
continue
parts = line.split("\t")
if len(parts) > 2 and parts[2] == "gene":
# 仅保留 gene_type=protein_coding 的行
if 'gene_type "protein_coding"' in line or 'gene_biotype "protein_coding"' in line:
m = re.search(r'gene_name "([^"]+)"', line)
if m:
genes.add(m.group(1))
# ==== 保存到文件 ====
genes_sorted = sorted(genes)
with open(f"{script_dir}/{output_file}", "w") as f:
for g in genes_sorted:
f.write(g + "\n")
print(f"✅ 已提取 {len(genes_sorted)} 个蛋白编码基因 → {output_file}")

BIN
embryo-backend/Data/gencode.v48.annotation.gtf.gz (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,173 @@
import os
import trimesh
import pandas as pd
import numpy as np
import anndata as ad
from collections import defaultdict
# ==== 参数 ====
script_dir = os.path.dirname(os.path.realpath(__file__))
glb_files = [f"CS{i}.glb" for i in range(11,24,1)]
N_total = 30000
use_surface_sampling = False
n_genes = 1000
n_markers_per_label = 10
# ==== 读取真实基因名 ====
gene_list_file = os.path.join(script_dir, "human_protein_coding_genes.txt")
assert os.path.exists(gene_list_file), f"❌ 缺少基因名文件 {gene_list_file}"
all_gene_names = pd.read_csv(gene_list_file, header=None)[0].tolist()
gene_names = all_gene_names[:n_genes]
# ==== 真实 marker 基因 ====
true_markers = {
"Ectoderm": ["SOX2", "PAX6", "NES", "TUBB3", "OTX2"],
"Mesoderm": ["TBXT", "MESP1", "HAND1", "GATA4", "PDGFRA"],
"Endoderm": ["SOX17", "FOXA2", "GATA6", "CXCR4", "HNF1B"],
"Notochord": ["SHH", "NOG", "CHRD", "FOXA2", "Brachyury"],
"NeuralTube": ["OLIG2", "NKX6-1", "HOXB4", "PAX3", "SNAI2"]
}
# ==== 采样函数 ====
def sample_mesh(mesh, label, n_samples):
if use_surface_sampling:
points, face_idx = trimesh.sample.sample_surface(mesh, n_samples)
if hasattr(mesh.visual, "vertex_colors") and len(mesh.visual.vertex_colors) == len(mesh.vertices):
face_colors = mesh.visual.vertex_colors[mesh.faces]
colors = face_colors.mean(axis=1)[face_idx, :3]
else:
mat_color = np.array([200, 200, 200])
colors = np.tile(mat_color, (n_samples, 1))
else:
verts = mesh.vertices
if len(verts) > n_samples:
idx = np.random.choice(len(verts), n_samples, replace=False)
verts = verts[idx]
else:
idx = np.arange(len(verts))
if hasattr(mesh.visual, "vertex_colors") and len(mesh.visual.vertex_colors) == len(mesh.vertices):
colors = mesh.visual.vertex_colors[idx, :3]
else:
mat_color = np.array([200, 200, 200])
colors = np.tile(mat_color, (len(verts), 1))
points = verts
labels = np.array([label] * len(points))
return points, colors, labels
# ==== Step 1: 计算全局最大边长 ====
all_bounds = []
for glb_name in glb_files:
glb_path = os.path.join(script_dir, glb_name)
if not os.path.exists(glb_path):
continue
scene = trimesh.load(glb_path)
if isinstance(scene, trimesh.Scene):
for geom in scene.geometry.values():
all_bounds.append(geom.bounds) # (min,max)
else:
all_bounds.append(scene.bounds)
all_bounds = np.array(all_bounds)
global_min = np.min(all_bounds[:,0,:], axis=0)
global_max = np.max(all_bounds[:,1,:], axis=0)
global_size = np.max(global_max - global_min)
print(f"🌍 统一缩放基准: global_size={global_size}")
# ==== Step 2: 处理单个 GLB ====
def process_glb(glb_path, sample_name):
scene = trimesh.load(glb_path)
all_points, all_colors, all_labels = [], [], []
if isinstance(scene, trimesh.Scene):
total_points = sum(len(g.vertices) for g in scene.geometry.values())
for name, geom in scene.geometry.items():
ratio = len(geom.vertices) / total_points
n_samples = max(1, int(N_total * ratio))
p, c, l = sample_mesh(geom, name, n_samples)
all_points.append(p)
all_colors.append(c)
all_labels.append(l)
else:
p, c, l = sample_mesh(scene, "mesh", N_total)
all_points.append(p)
all_colors.append(c)
all_labels.append(l)
points = np.vstack(all_points)
colors = np.vstack(all_colors)
labels = np.concatenate(all_labels)
if len(points) > N_total:
idx = np.random.choice(len(points), N_total, replace=False)
points, colors, labels = points[idx], colors[idx], labels[idx]
# ✅ 平移到中心点
center = points.mean(axis=0)
points_centered = points - center
# ✅ 统一缩放(保持原始比例)
points_scaled = points_centered / global_size
# ✅ 如需修正坐标系方向可启用以下行示例交换Y和Z
# points_scaled = points_scaled[:, [0, 2, 1]]
# points_scaled[:, 1] *= -1
df = pd.DataFrame(points_scaled, columns=["x","y","z"])
df["r"], df["g"], df["b"] = colors[:,0], colors[:,1], colors[:,2]
df["label"] = labels
csv_file = os.path.join(script_dir, f"{sample_name}_point_cloud_30000_centered_scaled.csv")
df.to_csv(csv_file, index=False)
print(f"✅ 已导出 {csv_file} (中心化 & 统一大小, 保持比例)")
return df
# ==== Step 3: 生成 h5ad ====
def create_h5ad(df, sample_name):
points = df[['x','y','z']].to_numpy()
cell_types = df['label'].to_numpy()
unique_labels = sorted(set(cell_types))
marker_genes = {}
all_marker_set = set()
for ct in unique_labels:
valid_markers = [g for g in true_markers.get(ct, []) if g in gene_names]
while len(valid_markers) < n_markers_per_label:
g = np.random.choice(gene_names)
if g not in valid_markers:
valid_markers.append(g)
marker_genes[ct] = valid_markers
all_marker_set.update(valid_markers)
np.random.seed(42)
expr_matrix = np.random.poisson(lam=1.0, size=(len(df), len(gene_names))).astype(np.float32)
for ct in unique_labels:
cell_idx = np.where(cell_types == ct)[0]
marker_idx = [gene_names.index(g) for g in marker_genes[ct]]
expr_matrix[np.ix_(cell_idx, marker_idx)] += np.random.poisson(lam=5.0, size=(len(cell_idx), len(marker_idx)))
obs = pd.DataFrame(index=[f"{sample_name}_cell{i}" for i in range(len(df))])
obs["cell_type"] = cell_types
var = pd.DataFrame(index=gene_names)
var["is_marker"] = ["yes" if g in all_marker_set else "no" for g in gene_names]
adata = ad.AnnData(X=expr_matrix, obs=obs, var=var)
adata.obsm["spatial"] = points
output_h5ad = os.path.join(script_dir, f"{sample_name}.h5ad")
adata.write(output_h5ad)
with open(os.path.join(script_dir, f"{sample_name}_marker_genes.txt"), "w") as f:
for ct, genes in marker_genes.items():
f.write(f"{ct} : {', '.join(genes)}\n")
print(f"✅ 已生成 {output_h5ad} ({len(df)} cells × {len(gene_names)} genes)")
# ==== Step 4: 批量运行 ====
for glb_name in glb_files:
glb_path = os.path.join(script_dir, glb_name)
if os.path.exists(glb_path):
sample_name = os.path.splitext(glb_name)[0]
df = process_glb(glb_path, sample_name)
create_h5ad(df, sample_name)
else:
print(f"⚠️ 未找到 {glb_name},跳过")

File diff suppressed because it is too large Load Diff