稻花香里说丰年

This commit is contained in:
wJsJwr 2018-03-30 14:06:08 +08:00
parent 99fedde465
commit 8c9dbec59e
5 changed files with 346 additions and 177 deletions

View File

@ -1,3 +1,3 @@
{
"python.pythonPath": "C:\\Users\\wjs\\Anaconda3\\python.exe"
"python.pythonPath": "/Users/wjsjwr/.pyenv/versions/anaconda3-5.0.1/bin/python"
}

45
dist_of_k.py Normal file
View File

@ -0,0 +1,45 @@
import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
from numpy import mean, std
import numpy as np
matches = Matches('wos-data-new')
max_round = 15
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
index = np.arange(11)
ax.set_xlabel('k')
ax.set_ylabel('p(k)')
c = ['#00b894','#00cec9','#0984e3','#6c5ce7','#e84393','#d63031','#e17055','#fdcb6e','#2d3436','#6ab04c','#30336b','#ED4C67']
for i in range(len(matches.data)):
k = np.zeros(11)
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
for j in n.keys():
k[len(n[j])] += 1
pk = k / np.sum(k)
print(i)
ax.scatter(index, pk, color=c[i])
# ax.set_title('Scores by group and gender')
fig.tight_layout()
plt.show()
# plt.savefig('graph/neigh_per_round.eps')

View File

@ -95,6 +95,55 @@ class Match:
return len(self.raw_data)
def get_tr(self, i, target, nb, sv):
"""
# 计算tau_p的方式是统计周围邻居剩余的tr
# 本函数计算第i轮所有有消耗tr的player最后剩余的tr
# 由于是计算剩余tr所以不能计算和target之间的交互
# nb是target的邻居
"""
trs = {}
req = self.query('action', 'request').where(lambda x: x['rno'] == i+1)
app = self.query('action', 'approve').where(lambda x: x['rno'] == i+1).raw_data
can = self.query('action', 'cancel').where(lambda x: x['rno'] == i+1).raw_data
den = self.query('action', 'deny').where(lambda x: x['rno'] == i+1).raw_data
fr = []
for r in self.query('action', 'done').where(lambda x: x['rno'] == i and (x['a'] == target or x['b'] == target)).raw_data:
if r['a'] == target:
fr.append(r['b'])
elif r['b'] == target:
fr.append(r['a'])
truenb = []
for r in nb:
if r not in fr and r in sv:
truenb.append(r)
trs[r] = 1440
for r in req.raw_data:
if r['from'] in truenb and r['to'] != target :
if r['from'] not in trs:
trs[r['from']] = 1440
trs[r['from']] -= r['tr']
for r in app:
if r['from'] in truenb and r['to'] != target:
if r['from'] not in trs:
trs[r['from']] = 1440
trs[r['from']] -= r['tr']
for r in can:
if r['from'] in trs and r['to'] != target:
trs[r['from']] += req.where(lambda x: x['from'] == r['from'] and x['to'] == r['to'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
for r in den:
if r['to'] in trs and r['from'] != target:
trs[r['to']] += req.where(lambda x: x['from'] == r['to'] and x['to'] == r['from'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
return trs
@staticmethod
def read_from_json(json_path):
"""

View File

@ -10,197 +10,150 @@ from matplotlib import markers
def error(f,x,y):
return sp.sum((f(x)-y)**2)
def get_tr(m, i, target, nb, sv):
"""
# 计算tau_p的方式是统计周围邻居剩余的tr
# 本函数计算第i轮所有有消耗tr的player最后剩余的tr
# 由于是计算剩余tr所以不能计算和target之间的交互
# nb是target的邻居
"""
trs = {}
req = m.query('action', 'request').where(lambda x: x['rno'] == i+1)
app = m.query('action', 'approve').where(lambda x: x['rno'] == i+1).raw_data
can = m.query('action', 'cancel').where(lambda x: x['rno'] == i+1).raw_data
den = m.query('action', 'deny').where(lambda x: x['rno'] == i+1).raw_data
if __name__ == '__main__':
fr = []
for r in m.query('action', 'done').where(lambda x: x['rno'] == i and (x['a'] == target or x['b'] == target)).raw_data:
if r['a'] == target:
fr.append(r['b'])
elif r['b'] == target:
fr.append(r['a'])
matches = Matches('wos-data-new')
max_round = 15
truenb = []
for r in nb:
if r not in fr and r in sv:
truenb.append(r)
trs[r] = 1440
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
for r in req.raw_data:
if r['from'] in truenb and r['to'] != target :
if r['from'] not in trs:
trs[r['from']] = 1440
trs[r['from']] -= r['tr']
neighbors = {}
coopr = []
x = np.arange(1, max_round)
mwCo = {} # Match-wise frequency of cooperation
mwTau = {} # Match-wise Tau
bx = []
tau = []
for r in app:
if r['from'] in truenb and r['to'] != target:
if r['from'] not in trs:
trs[r['from']] = 1440
trs[r['from']] -= r['tr']
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
for r in can:
if r['from'] in trs and r['to'] != target:
trs[r['from']] += req.where(lambda x: x['from'] == r['from'] and x['to'] == r['to'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for r in den:
if r['to'] in trs and r['from'] != target:
trs[r['to']] += req.where(lambda x: x['from'] == r['to'] and x['to'] == r['from'] and x['log_id'] < r['log_id']).orderby('log_id').raw_data[-1]['tr']
for i in range(max_round):
co = []
for j in range(len(matches.data)):
coop = 0
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
for row in rows:
if row['act_a'] == 'C':
coop += 1
if row['act_b'] == 'C':
coop += 1
return trs
if rows:
co.append(float(coop) / float(len(rows)*2))
mwCo["%s-%d"%(j,i)] = co[-1]
bx.append(co)
if co:
coopr.append(np.average(co))
matches = Matches('wos-data-new')
max_round = 15
for i in range(max_round-1):
tp = []
for j in range(len(matches.data)):
if i == 0:
for r in matches.data[j].query('player', 'join').raw_data:
t = 0
k = r['pid']
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
t = 1440 * len(neighbors[matches.names[j]][k])
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
else:
if str(i) not in survivals[matches.names[j]]:
continue
for k in survivals[matches.names[j]][str(i)]:
t = 0
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
trs = matches.data[j].get_tr(i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
for l in neighbors[matches.names[j]][k]:
if l in trs:
t += trs[l]
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
coopr = []
x = np.arange(1, max_round)
mwCo = {} # Match-wise frequency of cooperation
mwTau = {} # Match-wise Tau
bx = []
tau = []
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
if tp:
tau.append(np.average(tp))
else:
n[r['a']] = [r['b']]
tau.append(0)
if r['b'] in n:
n[r['b']].append(r['a'])
blue = '#0984e3'
red = '#d63031'
# p1折线图
# fig = plt.figure(figsize=(6.4, 3.6))
# ax = fig.gca()
# ax.plot(x, coopr, color=blue, linewidth=3)
# ax.set_ylim(0.5, 1)
# ax2 = ax.twinx()
# ax2.plot(x, tau, color=red, linewidth=3)
# ax2.set_ylim(0,1440)
# ax.set_xlim(1,14)
# ax.set_xlabel("Rounds")
# ax.set_ylabel("Frequency of Cooperation", color=blue)
# ax.tick_params(axis='y', labelcolor=blue)
# ax2.set_ylabel("$\\tau_{p}$", family='sans-serif', color=red)
# ax2.tick_params(axis='y', labelcolor=red)
# plt.tight_layout()
# # plt.show()
# plt.savefig('graph/tau_p_co_plot.eps')
tau2 = []
coopr2 = []
tau_r = []
coopr_r = []
for i in range(len(tau)):
if tau[i] <= 720:
tau2.append(tau[i])
coopr2.append(coopr[i])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
tau_r.append(tau[i])
coopr_r.append(coopr[i])
for i in range(max_round):
co = []
for j in range(len(matches.data)):
coop = 0
rows = matches.data[j].query('action', 'done').where(lambda x: x['rno']==i+1).raw_data
for row in rows:
if row['act_a'] == 'C':
coop += 1
if row['act_b'] == 'C':
coop += 1
# p2散点图
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
# ax.set_ylim(0.5, 1)
fp1,residuals,rank,sv,rcond = sp.polyfit(tau2, coopr2, 1, full=True)
print("残差:",residuals)
print('Model parameter:',fp1)
f1 = sp.poly1d(fp1)
print("error= %f" % error(f1, tau2, coopr2))
# fx = sp.linspace(0,max(tau2),1000)
fx = sp.linspace(0,720,2)
if rows:
co.append(float(coop) / float(len(rows)*2))
mwCo["%s-%d"%(j,i)] = co[-1]
bx.append(co)
if co:
coopr.append(np.average(co))
for i in range(max_round-1):
tp = []
for j in range(len(matches.data)):
if i == 0:
for r in matches.data[j].query('player', 'join').raw_data:
t = 0
k = r['pid']
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
t = 1440 * len(neighbors[matches.names[j]][k])
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
else:
if str(i) not in survivals[matches.names[j]]:
continue
for k in survivals[matches.names[j]][str(i)]:
t = 0
if k not in neighbors[matches.names[j]]:
print("[%s(%d)] alone: %d" % (matches.names[j], i+1, k))
else:
trs = get_tr(matches.data[j], i, k, neighbors[matches.names[j]][k], survivals[matches.names[j]][str(i)])
for l in neighbors[matches.names[j]][k]:
if l in trs:
t += trs[l]
tp.append(t if t < 1440 else 1440)
mwTau["%s-%d"%(j,i)] = tp[-1]
if tp:
tau.append(np.average(tp))
else:
tau.append(0)
blue = '#0984e3'
red = '#d63031'
# p1折线图
# fig = plt.figure(figsize=(6.4, 3.6))
# ax = fig.gca()
# ax.plot(x, coopr, color=blue, linewidth=3)
# ax.set_ylim(0.5, 1)
# ax2 = ax.twinx()
# ax2.plot(x, tau, color=red, linewidth=3)
# ax2.set_ylim(0,1440)
# ax.set_xlim(1,14)
# ax.set_xlabel("Rounds")
# ax.set_ylabel("Frequency of Cooperation", color=blue)
# ax.tick_params(axis='y', labelcolor=blue)
# ax2.set_ylabel("$\\tau_{p}$", family='sans-serif', color=red)
# ax2.tick_params(axis='y', labelcolor=red)
# plt.tight_layout()
# # plt.show()
# plt.savefig('graph/tau_p_co_plot.eps')
tau2 = []
coopr2 = []
tau_r = []
coopr_r = []
for i in range(len(tau)):
if tau[i] <= 720:
tau2.append(tau[i])
coopr2.append(coopr[i])
else:
tau_r.append(tau[i])
coopr_r.append(coopr[i])
# p2散点图
fig = plt.figure(figsize=(6.4, 3.6))
ax = fig.gca()
# ax.set_ylim(0.5, 1)
fp1,residuals,rank,sv,rcond = sp.polyfit(tau2, coopr2, 1, full=True)
print("残差:",residuals)
print('Model parameter:',fp1)
f1 = sp.poly1d(fp1)
print("error= %f" % error(f1, tau2, coopr2))
# fx = sp.linspace(0,max(tau2),1000)
fx = sp.linspace(0,720,2)
plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
plt.scatter(tau2, coopr2, color=blue, linewidths=2, zorder=100)
plt.scatter(tau_r, coopr_r, color='white', edgecolors=blue, linewidths=2, zorder=101)
ax.set_xlabel('$\\tau_{p}$', family='sans-serif')
ax.set_ylabel('Frequency of Cooperation')
ax.set_xlim(0, 1440)
ax.set_xticks(sp.linspace(0, 1440, 13))
ax.set_ylim(0.5, 1)
plt.tight_layout()
plt.show()
# plt.savefig('graph/tau_p_co_sca.eps')
plt.plot(fx,f1(fx),linewidth=2,color=red, ls='--', zorder=0)
plt.scatter(tau2, coopr2, color=blue, linewidths=2, zorder=100)
plt.scatter(tau_r, coopr_r, color='white', edgecolors=blue, linewidths=2, zorder=101)
ax.set_xlabel('$\\tau_{p}$', family='sans-serif')
ax.set_ylabel('Frequency of Cooperation')
ax.set_xlim(0, 1440)
ax.set_xticks(sp.linspace(0, 1440, 13))
ax.set_ylim(0.5, 1)
plt.tight_layout()
plt.show()
# plt.savefig('graph/tau_p_co_sca.eps')
# 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau2, coopr2))
# 皮尔逊相关系数
print("pearson: %f, p-value: %f" % pearsonr(tau2, coopr2))

122
taup_and_new_partner.py Normal file
View File

@ -0,0 +1,122 @@
import json
from matplotlib import pyplot as plt
from island.match import Match
from island.matches import Matches
import numpy as np
from scipy.stats import pearsonr
matches = Matches('wos-data-new')
k = np.arange(0, 1441, 144)
succ = np.zeros(11)
total = np.zeros(11)
survivals = {}
with open('survivals.json', 'r') as f:
survivals = json.load(f)
neighbors = {}
for i in range(len(matches.data)):
m = matches.data[i]
n = {}
for r in m.query('neighbor', 'create').raw_data:
if r['a'] in n:
n[r['a']].append(r['b'])
else:
n[r['a']] = [r['b']]
if r['b'] in n:
n[r['b']].append(r['a'])
else:
n[r['b']] = [r['a']]
neighbors[matches.names[i]] = n
for m_i in range(len(matches.data)):
m = matches.data[m_i]
info = m.query('game', 'created').select('info').first()['info']
conf = json.loads(info['config'])
game_end_at = int(info['game_end_at'])
for p in m.query('player', 'join').raw_data:
pid = p['pid']
for i in range(2, game_end_at):
neighborhood = []
if pid not in neighbors[matches.names[m_i]]:
break
for j in neighbors[matches.names[m_i]][pid]:
if j in survivals[matches.names[m_i]][str(i-1)]:
neighborhood.append(j)
if len(neighborhood) < 2:
break
previous_round_partner = []
for r in m.query('action', 'done').where(lambda x: x['rno']==i-1 and (x['a']==pid or x['b']==pid)).raw_data:
if r['a'] == pid:
previous_round_partner.append(r['b'])
else:
previous_round_partner.append(r['a'])
new_partner_request = 0
for r in m.query('action', 'request').where(lambda x: x['rno']==i and (x['from']==pid or x['to']==pid)).raw_data:
if r['from'] == pid:
if r['to'] not in previous_round_partner:
new_partner_request += 1
else:
if r['from'] not in previous_round_partner:
new_partner_request += 1
if new_partner_request == 0:
continue
new_partner_succ = 0
for r in m.query('action', 'done').where(lambda x: x['rno']==i and (x['a']==pid or x['b']==pid)).raw_data:
if r['a'] == pid:
if r['b'] not in previous_round_partner:
new_partner_succ += 1
else:
if r['a'] not in previous_round_partner:
new_partner_succ += 1
t = 0
trs = m.get_tr(i, pid, neighbors[matches.names[m_i]][pid], survivals[matches.names[m_i]][str(i-1)])
for l in neighborhood:
if l in trs:
t += trs[l]
t = t if t <= 1440 else 1440
succ[t//144] += new_partner_succ
total[t//144] += new_partner_request
red = '#d63031'
fig = plt.figure(figsize=(6.4, 4))
ax = fig.gca()
bar_width = 0.35
opacity = 1
error_config = {'ecolor': '0.3', 'capsize': 4}
# rects1 = ax.bar(k, succ, bar_width,
# alpha=opacity, color='#00b894',
# # yerr=c_req_suc_std, error_kw=error_config,
# label='Success')
# rects3 = ax.bar(k + bar_width, total, bar_width,
# alpha=opacity, color='#fdcb6e',
# # yerr=d_req_suc_mean, error_kw=error_config,
# label='Requests')
ax.set_xlabel('k')
ax.set_ylabel('Count')
# ax.set_title('Scores by group and gender')
# ax.set_xticks(k + bar_width / 2)
# ax.set_xticklabels(k)
ax.legend()
ax2 = ax.twinx()
ax.plot(k, succ, color='#00b894', lw=2, marker='*', ls='none')
ax.plot(k, total, color='#fdcb6e', lw=2, marker='+', ls='none')
for i in range(11):
if total[i] == 0:
total[i] = 1
ax2.plot(k, succ/total,linewidth=2,color=red, ls='--')
# ax2.set_ylabel("Frequency of new partners", family='sans-serif', color=red)
# ax2.tick_params(axis='y', labelcolor=red)
ax2.set_ylim(0,1)
fig.tight_layout()
plt.show()
# plt.savefig('graph/k_and_new_partner.eps')
# print("[succ vs k]pearson: %f, p-value: %f" % pearsonr(succ, k))
# print("[total vs k]pearson: %f, p-value: %f" % pearsonr(total, k))
# print("[rate vs k]pearson: %f, p-value: %f" % pearsonr(succ/total, k))
# print(np.average(succ/total))